Compare commits
46 Commits
ee8ce9ca14
...
main
Author | SHA1 | Date | |
---|---|---|---|
f3df3d4a1b | |||
8d6c219f9e | |||
f8f1ede1a4 | |||
28e89e127c | |||
1f1dccf3bb | |||
84bfdd8f44 | |||
074059d02b | |||
4c97dfed5f | |||
122dc9acfc | |||
f1f2d53821 | |||
772c93dc5a | |||
0a195a2da5 | |||
a0343985c1 | |||
97ae37f617 | |||
3529515066 | |||
24d724a3d1 | |||
497f6f2168 | |||
72a2a05d61 | |||
eb621396c1 | |||
0fea416141 | |||
7dc4c3e1bc | |||
e0a4ea7fdb | |||
5030059d38 | |||
847fa64045 | |||
0f8bf3b822 | |||
114036042a | |||
62820c9a49 | |||
07cdd1c97c | |||
7d41a7fc94 | |||
db1175540a | |||
f0a0437612 | |||
4ce7f0f075 | |||
2cf8f82069 | |||
95530d00c1 | |||
ae5388ce6d | |||
02ee190cb2 | |||
6c4d5f202e | |||
5db8f71cff | |||
d3253699a4 | |||
7cdbb736bc | |||
14c4cc34a8 | |||
00806ac617 | |||
874bf5c1f5 | |||
7eb98a3eb3 | |||
36557878b2 | |||
56f3d93554 |
0
Untitled.md
Normal file
0
Untitled.md
Normal file
@ -1,3 +0,0 @@
|
||||
- To compose a function is to create a new function from multiple smaller functions.
|
||||
- They can be solved from the inside out
|
||||
-
|
@ -6,11 +6,20 @@ Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$.
|
||||
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
|
||||
|
||||
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
|
||||
- $\Delta x$ refers to the width of each sub-interval
|
||||
- $\Delta x$ refers to the width of each sub-interval, or $\frac{b-a}{n}$.
|
||||
- $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$
|
||||
- Or, the width of each interval times the interval index, plus the starting offset.
|
||||
|
||||
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
|
||||
|
||||
Then $\int_a^b f(x) dx = F(b) - F(a)$.
|
||||
|
||||
## Sum of an infinite series
|
||||
The sum of an infinite series can be defined as follows:
|
||||
$$ \sum_{i = 1}^n i = \frac{n(n+1)}{2}$$
|
||||
|
||||
## Examples
|
||||
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
|
||||
1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$
|
||||
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
|
||||
2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$.
|
||||
$$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$
|
||||
|
@ -1,11 +1,42 @@
|
||||
The integration by parts formula is:
|
||||
$$ \int udv = uv - \int vdu $$
|
||||
|
||||
Broadly speaking, integration by parts is done by:
|
||||
1. Pick a part of integral to be $u$.
|
||||
2. The rest of the integral will be $dv$,
|
||||
3. Compute the derivative of $u$, $du$.
|
||||
4. Compute the antiderivative of $dv$
|
||||
5. Substitute those values in to the integration by parts formula.
|
||||
## Deriving the Integration by Parts Formula
|
||||
$$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
||||
1. Integrating both sides, we get:
|
||||
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
||||
2. Through the distributive property of integrals,
|
||||
$$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||
3. Therefore:
|
||||
$$f(x)g(x) = \intf'(x)g(x)dx $$
|
||||
3. An integral cancels out an antiderivative, therefore:
|
||||
$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||
4. Moving terms around:
|
||||
$$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
|
||||
|
||||
Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$.
|
||||
|
||||
# Examples
|
||||
> Evaluate the below antiderivative using integration by parts.
|
||||
$$\int xe^{2x}dx$$
|
||||
1. Define $u$ to be a value you can take the derivative of easily, in this case $u = x$. The rest of the integral will be set to $dv$, in this case, $dv = e^{2x}dx$.
|
||||
- $u = x$
|
||||
- $du = \frac{d}{dx}(x)= 1dx$
|
||||
- $dv = e^{2x}dx$
|
||||
- $v = \frac{1}{2}e^{2x}$ - The antiderivative of $dv$.
|
||||
2. Looking back at the integration by parts formula, we know that:
|
||||
$$ \int udv = uv - \int v du $$
|
||||
$$ \int xe^{2x}dx = (\frac{1}{2}e^{2x})(x)-\int (\frac{1}{2}e^{2x}) (1dx) $$
|
||||
3. The remaining integral can be solved with $u$ substitution, but we've already defined $u$, so we use $w$ as a replacement.
|
||||
- $w = 2x$
|
||||
- $dw = 2dx$
|
||||
- $\frac{1}{2}dw=dx$
|
||||
1. Substituting $w$ and $dw$ into the integral:
|
||||
$$ \int \frac{1}{2}e^w \frac{1}{2}dw $$
|
||||
2. This gives an integral that can be computed naively
|
||||
$$ \int\frac{1}{2}e^{w}\frac{1}{2}dw = \frac{1}{4}\int e^w dw= \frac{1}{4}e^{2x} $$
|
||||
4. Combining everything together, we get:
|
||||
$$ \int xe^{2x}dx = (\frac{1}{2}e^{2x})(x)- (\frac{1}{4}e^2x) + C$$
|
@ -0,0 +1,77 @@
|
||||
The below integration makes use of the following trig identities:
|
||||
1. The Pythagorean identity: $\sin^2(x) + \cos^2(x) = 1$
|
||||
2. The derivative of sine: $\frac{d}{dx}sin(x) = cos(x)$
|
||||
3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$
|
||||
4. Half angle cosine identity: $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
|
||||
5. Half angle sine identity: $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$
|
||||
6. $tan^2(x) + 1 = sec^2(x)$
|
||||
7. $\dfrac{d}{dx}(\tan(x)) = \sec^2(x) \Rightarrow \int \sec^2(x)dx = \tan(x) + C$
|
||||
8. $\dfrac{d}{dx}(\sec x) = \sec(x)\tan(x) \Rightarrow \int\sec(x)\tan(x) dx = \sec(x) + C$
|
||||
# Examples
|
||||
> Evaluate the integral $\int\sin^5(x)dx$
|
||||
1. With trig identities, it's common to work *backwards* with u-sub. In the above example, we can convert the equation into simpler cosine functions by setting $du$ to $-\sin(x)dx$. This means that $u$ is equal to $cos(x)$.
|
||||
$$ \int\sin^4(x)\sin(x)dx$$
|
||||
2. Rewrite $sin^4(x)$ to be $(\sin^2(x))^2$ to take advantage of the trig identity $1 - \cos^2(x) = \sin^2(x)$
|
||||
$$ \int(\sin^2x)^2 \sin(x)dx$$
|
||||
3. Apply the above trig identity and substitute $u$:
|
||||
$$ \int(1 - u^2)^2 (-du) $$
|
||||
4. Foil out and move negative out of integral:
|
||||
$$ -\int(1 - 2u^2 + u^4)du $$
|
||||
5. Take advantage of the distributive property of integrals:
|
||||
$$ - (u - \frac{2}{3}u^3 + \frac{1}{5}u^5) + C $$
|
||||
6. Substituting $\cos(x)$ back in for $u$, we get the evaluated (but not entirely simplified) integral:
|
||||
$$-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x) $$
|
||||
# Trigonometric Substitutions
|
||||
Trigonometric substitution is useful for equations containing $\sqrt{a^2 + x^2}$ or $a^2 + x^2$, where $a$ is any constant. It removes any addition or subtraction.
|
||||
|
||||
The general process involves the use of a trig identity and multiplying everything in that identity by a constant.
|
||||
|
||||
Consider the identity:
|
||||
$$ 1 + \tan^2(\theta) = \sec^2(\theta)$$
|
||||
Multiplying both sides of the identity by $a^2$, we get:
|
||||
$$a^2 + a^2\tan^2(\theta) = a^2\sec^2(\theta)$$
|
||||
This enables us to make use of **substitution** to simplify many integrals.
|
||||
- $x = a\tan \theta$
|
||||
- $dx = a \sec^2\theta d\theta$
|
||||
- for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$
|
||||
# Examples
|
||||
> Evaluate the integral $\int\frac{3}{4+x^2}dx$
|
||||
1. Move the constant coefficient out of the integral:
|
||||
$$ \int \frac{3}{4+x^2}dx = 3\int \frac{1}{4 + x^2}dx$$
|
||||
2. Let $x = 2tan\theta$ and $dx = (2sec^2\theta d\theta)$, substitute accordingly
|
||||
$$ = 3\int\frac{1}{4 + 4\tan^2\theta}(2\sec^2\theta)d\theta$$
|
||||
3. Factor $4$ out in the denominator
|
||||
$$ = 3\int\frac{1}{4(1 + \tan^2\theta)}(2\sec^2\theta)d\theta$$
|
||||
4. Considering the identity $1 + \tan^2 \theta = \sec^2 \theta$
|
||||
$$ = 3\int\frac{1}{4(\sec^2\theta)}(2\sec^2\theta)d\theta$$
|
||||
5. $\sec^2\theta$ is present in the numerator and the denominator, so we can cancel those out. This means that:
|
||||
$$ 3\int\frac{2}{4}d\theta = \frac{3}{2} \theta + C$$
|
||||
6. At this point, we want to determine what $\theta$ is equal to relative to $x$.
|
||||
1. Look back to step 2 we defined $x = 2\tan\theta$
|
||||
2. Moving $2$ to the other side, we get $\frac{x}{2} = \tan\theta$
|
||||
3. Because we defined bounds for our definition of $\theta$, we can take advantage of $\arctan$, therefore:
|
||||
$$ \theta = \arctan(\frac{x}{2}) $$
|
||||
7. Rewriting the equation with $\theta$ in terms of x, we get:
|
||||
$$ \frac{3}{2}\arctan(\frac{x}{2}) + C$$
|
||||
This means that:
|
||||
$$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$
|
||||
|
||||
# A VERY LARGE LIST OF TRIG IDENTITIES FOR CALCULUS
|
||||
|
||||
| Reciprocal |
|
||||
| ------------------------------------ |
|
||||
| $\csc(x) = \dfrac{1}{sin(x)}$ |
|
||||
| $\sec(x) = \dfrac{1}{\cos(x)}$ |
|
||||
| $\cot(x) = \dfrac{1}{\tan(x)}$ |
|
||||
|
||||
| Quotient |
|
||||
| -- |
|
||||
| $\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ |
|
||||
| $\cot(x) = \dfrac{\cos(x)}{\sin(x)}$ |
|
||||
|
||||
| Pythagorean |
|
||||
| -- |
|
||||
| $\sin^2(x) + \cos^2(x) = 1$ |
|
||||
| $1 + \tan^2(x) = \sec^2(x)$ |
|
||||
| $1 + \cot^2(x) = \csc^2(x)$ |
|
||||
| $1
|
67
education/physics/PHYS2210/Unit 1.md
Normal file
67
education/physics/PHYS2210/Unit 1.md
Normal file
@ -0,0 +1,67 @@
|
||||
Motion in a straight line is one dimensional.
|
||||
|
||||
Kinematics or the physics of motion has 4 noteworthy parameters: time ($t$), position ($x$), velocity ($v$), and acceleration ($a$).
|
||||
|
||||
Kinematic problems have a start and end of motion.
|
||||
|
||||
# Displacement
|
||||
|
||||
Displacement is calculated with the formula:
|
||||
$$\Delta x = \text{x-value of final position} - \text{x-value of initial posiion}$$
|
||||
|
||||
# Velocity
|
||||
Average velocity over a time interval $\Delta t$ is defined to be: **the displacement** (net change in position), **divided by** **the time taken**.
|
||||
|
||||
$$ \bar{v} = \dfrac{\text{final position-initial position}}{\text{final time - initial time}} = \dfrac{x_2 - x_1}{t_2 - t_1} = \dfrac{\Delta x}{\Delta t}$$
|
||||
**Speed (m/s)** is defined to be the total distance traveled divided by the time taken. Speed and velocity are *not the same*.
|
||||
|
||||
|
||||
$$ v_{\text{instant}} = v = \lim_{\Delta t \to 0}\frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
|
||||
- $x(t)$ -> **position** as a function of time
|
||||
- $v(t)$ -> **slope** of position-vs-time (derivative of $x(t)$)
|
||||
- $a(t)$ -> **slope** of velocity-vs-time (derivative of $v(t)$)
|
||||
# Acceleration
|
||||
To find the instantaneous acceleration, we can apply the formula:
|
||||
|
||||
$$a_{\text{instant}} = a = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$
|
||||
## Equations of Motion for Constant Acceleration
|
||||
1. $v = v_0 + at$ - Use when missing $x$
|
||||
2. $x = x_0 + \frac{1}{2}(v_0 + v)t$ - Use when missing $a$
|
||||
3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$ - Use when missing $v$
|
||||
4. $v^2 = v_0^2 + 2a(x - x_0)$ - Use when missing $t$
|
||||
|
||||
(Actually useful equations)
|
||||
$$ t = \frac{v_f - v_i}{a} $$
|
||||
$$ a = \frac{v - v_0}{t}
|
||||
$$s = v_it + \frac{1}{2}at^2 $$
|
||||
| -------------- | ----- |
|
||||
| $t_0$ | $t$ |
|
||||
| $v_0$ | $v$ |
|
||||
| $x_0$ | $x$ |
|
||||
| $a$ (constant) | $a$ |
|
||||
## Examples
|
||||
|
||||
> Sally aggressively drives her Alfa Romeo from rest to 50 m/s in 6s. What is her acceleration?
|
||||
1. Start:
|
||||
- $v_0 = 0 m/s$
|
||||
- $t_0 = 0s$
|
||||
- $x_0 = 0m$
|
||||
2. Final:
|
||||
- $v = 50 m/s$
|
||||
- $t = 6s$
|
||||
- $x = ?$
|
||||
3. Using the equation $v = v_0 + at \to a = \frac{(v - v_0)}{t}$, $a$ = $(50 m/s - 0 m/s)/ 6s = 8.3m/s^2$
|
||||
4. Assess: do the units make sense? Is the answer reasonable?
|
||||
|
||||
> An object slides until coming to a rest. It traveled 15 meters in 3 seconds. What was the object's acceleration?
|
||||
1. The problem is a kinematics problem, refer to the above formula.
|
||||
2. Acceleration is a constant
|
||||
3. Problem has two unknowns, $v_0$ and $a$, let's solve for $v_0$ first.
|
||||
4. $x = x_0 + \frac{1}{2}(v_0 + v) t \to v_0 = 2*(x - x_0)/ t \to 2*(15)/3 = 10$
|
||||
5. $v = v_0 + at \to a = (v - v_0) /t \to a = (-10 m/s) / 3s = -3.33m/s^2$
|
||||
6. Asses: Units? Answer make sense? Significant figures? Acceleration speeding up or slowing down?
|
||||
# Gravity
|
||||
- Is the problem 1 dimensional?
|
||||
- Could draw axis pointing upwards, call it y axis
|
||||
- If not specified, assume acceleration is $g = 9.8 m/s^2$.
|
||||
- Direction is important, $g$ is down towards the earth, so it's often negative. The sign depends on your choice of axis.
|
0
education/physics/PHYS2210/Unit 2.md
Normal file
0
education/physics/PHYS2210/Unit 2.md
Normal file
Reference in New Issue
Block a user