vault backup: 2025-09-18 12:48:06
This commit is contained in:
@ -58,10 +58,20 @@ $$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$
|
||||
|
||||
# A VERY LARGE LIST OF TRIG IDENTITIES FOR CALCULUS
|
||||
|
||||
| non calc identities<br> |
|
||||
| Reciprocal |
|
||||
| ------------------------------------ |
|
||||
| $\csc(x) = \dfrac{1}{sin(x)}$ |
|
||||
| $\sec(x) = \dfrac{1}{\cos(x)}$ |
|
||||
| $\cot(x) = \dfrac{1}{\tan(x)}$ |
|
||||
| $\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ |
|
||||
|
||||
| Quotient |
|
||||
| -- |
|
||||
| $\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ |
|
||||
| $\cot(x) = \dfrac{\cos(x)}{\sin(x)}$ |
|
||||
|
||||
| Pythagorean |
|
||||
| -- |
|
||||
| $\sin^2(x) + \cos^2(x) = 1$ |
|
||||
| $1 + \tan^2(x) = \sec^2(x)$ |
|
||||
| $1 + \cot^2(x) = \csc^2(x)$ |
|
||||
| $1
|
Reference in New Issue
Block a user