16 lines
679 B
Markdown
16 lines
679 B
Markdown
# Formal Definition
|
|
Let $f$ be a continuous function on an interval $[a, b]$.
|
|
|
|
Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$.
|
|
|
|
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
|
|
|
|
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
|
|
- $\Delta x$ refers to the width of each sub-interval
|
|
- $f(x_i)$ refers to the height of each subinterval.
|
|
|
|
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
|
|
Then $\int_a^b f(x) dx = F(b) - F(a)$.
|
|
|
|
## Examples
|
|
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ |