# Formal Definition Let $f$ be a continuous function on an interval $[a, b]$. Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$. Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$. Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$ - $\Delta x$ refers to the width of each sub-interval - $f(x_i)$ refers to the height of each subinterval. Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$). Then $\int_a^b f(x) dx = F(b) - F(a)$. ## Examples $$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$