notes/education/math/MATH1060 (trig)/The Unit Circle.md
2024-09-13 16:12:59 -06:00

28 lines
1.5 KiB
Markdown

# Introduction
The unit circle has a center a $(0, 0)$, and a radius of $1$ with no defined unit.
Sine and cosine can be used to find the coordinates of specific points on the unit circle.
**Sine likes $y$, and cosine likes $x$.**
When sine is positive, the $y$ value is positive. When $x$ is positive, the cosine is positive.
$$ cos(\theta) = x $$
$$ sin(\theta) = y $$
## Sine and Cosine
| Angle | $0$ | $\frac{\pi}{6}$ or $30 \degree$ | $\frac{\pi}{4}$ or $45\degree$ | $\frac{\pi}{2}$ or $90\degree$ |
| ----- | --- | ------------------------------- | ------------------------------ | ------------------------------ |
| | | | | |
| | | | | |
## The Pythagorean Identity
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.
$$ sin^2 \theta + cos^2 \theta = 1 $$
# Definitions
| Term | Description |
| ---------------- | ----------------------------------------------------------------------------- |
| $\theta$ (theta) | Theta refers to the angle measure in a unit circle. |
| $s$ | $s$ is used to the length of the arc created by angle $\theta$ on the circle. |