Compare commits

...

2 Commits

Author SHA1 Message Date
arc
36557878b2 vault backup: 2025-08-27 11:54:05 2025-08-27 11:54:05 -06:00
arc
56f3d93554 vault backup: 2025-08-27 11:49:05 2025-08-27 11:49:05 -06:00
2 changed files with 18 additions and 4 deletions

View File

@ -6,11 +6,19 @@ Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$.
Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$.
Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
- $\Delta x$ refers to the width of each sub-interval
- $\Delta x$ refers to the width of each sub-interval, or $\frac{b-a}{n}$.
- $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$
- Or, the width of each interval times the interval index, plus the starting offset.
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
Then $\int_a^b f(x) dx = F(b) - F(a)$.
## Examples
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$.
$$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$
> Using the fact that $x_i = \Delta x + a$, $
$$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$
$$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$
$$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$

View File

@ -7,5 +7,11 @@ $$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
2. Through the distributive property of integrals,
$$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
3. Therefore:
$$f(x)g(x) = \intf'(x)g(x)dx $$
3. An integral cancels out an antiderivative, therefore:
$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
4. Moving terms around:
$$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$.
# Examples