Files
notes/education/math/MATH1220 (calc II)/Integral Review.md
2025-08-27 11:54:05 -06:00

1.3 KiB

Formal Definition

Let f be a continuous function on an interval [a, b].

Divide [a, b] into n equal parts of width \Delta x = \dfrac{b-a}{n}.

Let x_0, x_1, x_2, \cdots, x_n be the endpoints of this subdivision. x_0 = a and x_n = b.

Define \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x

  • \Delta x refers to the width of each sub-interval, or \frac{b-a}{n}.
  • f(x_i) refers to the height of each subinterval, and can be found with the equation x_i = \Delta xi + a
    • Or, the width of each interval times the interval index, plus the starting offset.

Then let f be a continous function on [a, b] and let F be the antiderivative of f (i.e F'(x) = f(x)). Then \int_a^b f(x) dx = F(b) - F(a).

Examples

  1. Find the area under the curve between 0 and 1 of the function f(x) = x^2
\int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3
  1. Find the Riemann Sum under the curve between -2 and 2 of the function 2x + 2.
\int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x

Using the fact that x_i = \Delta x + a, $

= lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n} = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n} = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n}