Compare commits
11 Commits
8c346a674b
...
7eb094c9f9
Author | SHA1 | Date | |
---|---|---|---|
![]() |
7eb094c9f9 | ||
![]() |
f5dfcf27ed | ||
![]() |
2f31717a23 | ||
![]() |
5bff410579 | ||
![]() |
5a86cf372a | ||
![]() |
951d27ba85 | ||
![]() |
085f5bf4a7 | ||
![]() |
46f7a2c9b5 | ||
![]() |
0acfe2ddd3 | ||
![]() |
defef3e3b1 | ||
![]() |
24c0a5639d |
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -0,0 +1,27 @@
|
|||||||
|
{
|
||||||
|
"commitMessage": "vault backup: {{date}}",
|
||||||
|
"autoCommitMessage": "vault backup: {{date}}",
|
||||||
|
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||||
|
"autoSaveInterval": 5,
|
||||||
|
"autoPushInterval": 0,
|
||||||
|
"autoPullInterval": 5,
|
||||||
|
"autoPullOnBoot": true,
|
||||||
|
"disablePush": false,
|
||||||
|
"pullBeforePush": true,
|
||||||
|
"disablePopups": false,
|
||||||
|
"listChangedFilesInMessageBody": false,
|
||||||
|
"showStatusBar": true,
|
||||||
|
"updateSubmodules": false,
|
||||||
|
"syncMethod": "merge",
|
||||||
|
"customMessageOnAutoBackup": false,
|
||||||
|
"autoBackupAfterFileChange": false,
|
||||||
|
"treeStructure": false,
|
||||||
|
"refreshSourceControl": true,
|
||||||
|
"basePath": "",
|
||||||
|
"differentIntervalCommitAndPush": false,
|
||||||
|
"changedFilesInStatusBar": false,
|
||||||
|
"showedMobileNotice": true,
|
||||||
|
"refreshSourceControlTimer": 7000,
|
||||||
|
"showBranchStatusBar": true,
|
||||||
|
"setLastSaveToLastCommit": false
|
||||||
|
}
|
@ -24,7 +24,9 @@ $$ V(D) = d_{n-1} * 10^{n-1} + d_{n - 2} * 10^{n-2} + \cdots + d_1 * 10^1 + d_0
|
|||||||
In a binary or base 2 number system, each digit can be a zero or one, called a *bit*.
|
In a binary or base 2 number system, each digit can be a zero or one, called a *bit*.
|
||||||
$$ D = d_{n-1}d_{n-2} \cdots d_1 d_0 $$
|
$$ D = d_{n-1}d_{n-2} \cdots d_1 d_0 $$
|
||||||
To determine the integer value, a very similar formula can be used.
|
To determine the integer value, a very similar formula can be used.
|
||||||
$$ V(B) = b_{n-1} * 2^{n-1} + b_{n-2} * 2^{n-2} \cdots b_{1} * 2^1 + b_0 * 2^0 $$
|
$$ V(B) = b_{n-1} * 2^{n-1} + b_{n-2} * 2^{n-2} \cdots b_{1} * 2^1 + b_0 * 2^0 $$This formula can be generalized as:
|
||||||
|
*For radix $r$*:
|
||||||
|
$$ k = k_{n-1} k_{n-2} \cdots k_1 k_0$$
|
||||||
- The base of a number is often notated in the format of $(n)_b$, EG a base 10 number might be $(14)_{10}$, and a binary number might be $(10)_2$.
|
- The base of a number is often notated in the format of $(n)_b$, EG a base 10 number might be $(14)_{10}$, and a binary number might be $(10)_2$.
|
||||||
- The *least significant bit* (LSB) is usually the right-most bit. The highest value bit, or the *most significant bit* (MSB).
|
- The *least significant bit* (LSB) is usually the right-most bit. The highest value bit, or the *most significant bit* (MSB).
|
||||||
- A nibble is 4 bits, and a byte is 8 bits
|
- A nibble is 4 bits, and a byte is 8 bits
|
||||||
@ -34,18 +36,18 @@ Repeatedly divide by 2, and track the remainder.
|
|||||||
|
|
||||||
As an example, the below table shows how one might convert from $(857)_{10}$ to base 2.
|
As an example, the below table shows how one might convert from $(857)_{10}$ to base 2.
|
||||||
|
|
||||||
| Equation | Remainder |
|
| Equation | Remainder | |
|
||||||
| --------------- | --------- |
|
| --------------- | --------- | --- |
|
||||||
| $857 / 2 = 428$ | $1$ |
|
| $857 / 2 = 428$ | $1$ | |
|
||||||
| $428 / 2 = 214$ | $0$ |
|
| $428 / 2 = 214$ | $0$ | |
|
||||||
| $214 / 2 = 107$ | $0$ |
|
| $214 / 2 = 107$ | $0$ | |
|
||||||
| $107 / 2 = 53$ | $1$ |
|
| $107 / 2 = 53$ | $1$ | |
|
||||||
| $53 / 2 = 26$ | $1$ |
|
| $53 / 2 = 26$ | $1$ | |
|
||||||
| $26 / 2 = 13$ | $0$ |
|
| $26 / 2 = 13$ | $0$ | |
|
||||||
| $13 / 2 = 6$ | $1$ |
|
| $13 / 2 = 6$ | $1$ | |
|
||||||
| $6 / 2 = 3$ | $0$ |
|
| $6 / 2 = 3$ | $0$ | |
|
||||||
| $3 / 2 = 1$ | $1$ |
|
| $3 / 2 = 1$ | $1$ | |
|
||||||
| $1 / 2 = 0$ | $1$ |
|
| $1 / 2 = 0$ | $1$ | |
|
||||||
|
|
||||||
The final answer is $1101011001$. The least significant bit is the remainder of the first division operation, and the most significant bit is the remainder of the last operation.
|
The final answer is $1101011001$. The least significant bit is the remainder of the first division operation, and the most significant bit is the remainder of the last operation.
|
||||||
# Definitions
|
# Definitions
|
||||||
|
@ -18,6 +18,7 @@
|
|||||||
- Standardized in 1995
|
- Standardized in 1995
|
||||||
- Originally intended for simulation of logic networks, later adapted to synthesis
|
- Originally intended for simulation of logic networks, later adapted to synthesis
|
||||||
|
|
||||||
|
- Behavioral Verilog describes broader behavior, at a higher level
|
||||||
```verilog
|
```verilog
|
||||||
// V---V---v--v-----portlist (not ordered)
|
// V---V---v--v-----portlist (not ordered)
|
||||||
module example1(x1, x2, s, f);
|
module example1(x1, x2, s, f);
|
||||||
@ -34,6 +35,25 @@ module example1(x1, x2, s, f);
|
|||||||
endmodule
|
endmodule
|
||||||
```
|
```
|
||||||
|
|
||||||
- Behavioral Verilog describes broader behavior, at a higher level
|
```verilog
|
||||||
|
// V---V---v--v-----portlist (not ordered)
|
||||||
|
module example1(x1, x2, s, f);
|
||||||
|
// Defining the types of the various ports
|
||||||
|
input x1, x2, s;
|
||||||
|
output f;
|
||||||
|
// You can also do this
|
||||||
|
assign f = (~s & x1) | (s & x2);
|
||||||
|
// Or this
|
||||||
|
always @(a, b)
|
||||||
|
// always @(....) says "do this stuff whenever any of the values inside of @(...) change"
|
||||||
|
{s1, s0} = a + b;
|
||||||
|
endmodule
|
||||||
|
```
|
||||||
- Structural Verilog describes how things are laid out at a logic level
|
- Structural Verilog describes how things are laid out at a logic level
|
||||||
|
|
||||||
|
## Testbench Layout
|
||||||
|
- Define UUT module
|
||||||
|
- Initialize Inputs
|
||||||
|
- Wait
|
||||||
|
- Test every possible combination of inputs and validate that the outputs are correct
|
||||||
|
- Debug output can be displayed with `$display("Hello world");`
|
||||||
|
@ -18,4 +18,21 @@ The above formula can be used to find the *derivative*. This may also be referre
|
|||||||
## Secant Line
|
## Secant Line
|
||||||
A **Secant Line** connects two points on a graph.
|
A **Secant Line** connects two points on a graph.
|
||||||
|
|
||||||
A **Tangent Line** represents the rate of change or slope at a single point on the graph.
|
A **Tangent Line** represents the rate of change or slope at a single point on the graph.
|
||||||
|
|
||||||
|
# Notation
|
||||||
|
Given the equation $y = f(x)$, the following are all notations used to represent the derivative of $f$ at $x$:
|
||||||
|
- $f'(x)$
|
||||||
|
- $\dfrac{d}{dx}f(x)$
|
||||||
|
- $y'$
|
||||||
|
- $\dfrac{dy}{dx}$
|
||||||
|
- $\dfrac{df}{dx}$
|
||||||
|
- "Derivative of $f$ with respect to $x$"
|
||||||
|
|
||||||
|
# Functions that are not differentiable at a given point
|
||||||
|
- Where a function is not defined
|
||||||
|
- Where a sharp turn takes place
|
||||||
|
- If the slope of the tangent line is vertical
|
||||||
|
|
||||||
|
# Higher Order Differentials
|
||||||
|
- Take the differential of a differential
|
Loading…
x
Reference in New Issue
Block a user