Compare commits

...

2 Commits

Author SHA1 Message Date
arc
91f31077a5 vault backup: 2025-03-20 11:22:46 2025-03-20 11:22:46 -06:00
arc
f764ece987 vault backup: 2025-03-20 11:17:46 2025-03-20 11:17:46 -06:00
2 changed files with 42 additions and 7 deletions

View File

@ -0,0 +1,27 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -11,10 +11,18 @@ An antiderivative is useful when you know the rate of change, and you want to fi
## Formulas
| Differentiation Formula | Integration Formula |
| ---------------------------------------- | ------------------------------------------------------- |
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
| $\dfrac{d}{dx} e^x = e^x$ | |
| $\dfrac{d]{dx} a^x = \ln$ | |
| Differentiation Formula | Integration Formula |
| ----------------------------------------------------- | ------------------------------------------------------- |
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | <br>$\int \dfrac{1}{x}dx = \ln \|x\| + C$ |
| $\dfrac{d}{dx} e^x = e^x$ | <br>$\int e^x dx = e^x + C$ |
| $\dfrac{d}{dx} a^x = (\ln{a}) a^x$ | $\int a^xdx = \ln \|x\| + C$ |
| $\dfrac{d}{dx} \sin x = \cos x$ | $\int |
| $\dfrac{d}{dx} \cos x = -\sin x$ | |
| $\dfrac{d}{dx} \tan{x} = \sec^2 x$ | |
| $\dfrac{d}{dx} \sec x = \sec x \tan x$ | |
| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | |
| $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$ | |
| $\dfrac{d}{dx} k f(x) = k f'(x)$ | |
| $\dfrac{d}{dx} f(x) \pm g(x) = f'(x) \pm g'(x)$ | |