vault backup: 2025-03-20 11:12:46

This commit is contained in:
arc 2025-03-20 11:12:46 -06:00
parent a187b1974a
commit 6fb86a79b2
2 changed files with 8 additions and 32 deletions

View File

@ -1,27 +0,0 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -6,12 +6,15 @@ An antiderivative is useful when you know the rate of change, and you want to fi
## Examples
> Find the antiderivative of the function $y = x^2$
1. We know that $f'(x) = 2x$
1. We know that $f'(x) = 2x^1$
## Formulas
| Differentiation Formula | Integration Formula |
| ------------------------------ | ------------------------------------------------------- |
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
| Differentiation Formula | Integration Formula |
| ---------------------------------------- | ------------------------------------------------------- |
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
| $\dfrac{d}{dx} e^x = e^x$ | |
| $\dfrac{d]{dx} a^x = \ln$ | |