vault backup: 2025-03-20 11:22:46
This commit is contained in:
parent
f764ece987
commit
91f31077a5
@ -11,16 +11,18 @@ An antiderivative is useful when you know the rate of change, and you want to fi
|
||||
|
||||
## Formulas
|
||||
|
||||
| Differentiation Formula | Integration Formula |
|
||||
| --------------------------------------------------- | ------------------------------------------------------- |
|
||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
|
||||
| $\dfrac{d}{dx} e^x = e^x$ | |
|
||||
| $\dfrac{d}{dx} a^x = (\ln{a}) a^x$ | |
|
||||
| $\dfrac{d}{dx} \sin x = \cos x$ | |
|
||||
| $\dfrac{d}{dx} \cos x = -\sin x$ | |
|
||||
| $\dfrac{d}{dx} \tan{x} = \sec^2 x$ | |
|
||||
| $\dfrac{d}{dx} \sec x = \sec x \tan x$ | |
|
||||
| $\dfrac{d}{dx} \sin^-1 x = \dfrac{1}{\sqrt{1-x^2}}$ | |
|
||||
| $\dfrac{d}{dx} \tan^-1 x = \dfrac{} | |
|
||||
| Differentiation Formula | Integration Formula |
|
||||
| ----------------------------------------------------- | ------------------------------------------------------- |
|
||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | <br>$\int \dfrac{1}{x}dx = \ln \|x\| + C$ |
|
||||
| $\dfrac{d}{dx} e^x = e^x$ | <br>$\int e^x dx = e^x + C$ |
|
||||
| $\dfrac{d}{dx} a^x = (\ln{a}) a^x$ | $\int a^xdx = \ln \|x\| + C$ |
|
||||
| $\dfrac{d}{dx} \sin x = \cos x$ | $\int |
|
||||
| $\dfrac{d}{dx} \cos x = -\sin x$ | |
|
||||
| $\dfrac{d}{dx} \tan{x} = \sec^2 x$ | |
|
||||
| $\dfrac{d}{dx} \sec x = \sec x \tan x$ | |
|
||||
| $\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}}$ | |
|
||||
| $\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2}$ | |
|
||||
| $\dfrac{d}{dx} k f(x) = k f'(x)$ | |
|
||||
| $\dfrac{d}{dx} f(x) \pm g(x) = f'(x) \pm g'(x)$ | |
|
||||
|
Loading…
x
Reference in New Issue
Block a user