vault backup: 2025-02-25 09:48:29

This commit is contained in:
arc 2025-02-25 09:48:29 -07:00
parent 02f5d455cc
commit d6ade03ca4
2 changed files with 38 additions and 1 deletions

View File

@ -0,0 +1,27 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -11,4 +11,14 @@ The absolute **minimum** is the smallest possible output value for a function.
A number is considered critical if the output of a function exists and $\dfrac{d}{dx}$ is zero or undefined.
# Local Max/Min
A local max/min is a peak or trough at any point along the graph.
A local max/min is a peak or trough at any point along the graph.
# Extreme Value Theorem
If $f$ is a continuous function in a closed interval $[a, b]$, then $f$ achieves both an absolute maximum and an absolute minimum in $[a, b]$. Furthermore, the absolute extrema occur at $a$ or at $b$ or at a critical number between $a$ and $b$.
## Example
> Find the absolute maximum and absolute minimum of the function $f(x) = x^2 -3x + 2$ on the closed interval $[0, 2]$:
1. $x=0$ and $x=2$ are both critical numbers because they are endpoints. Endpoints are *always* critical numbers because $\dfrac{d}{dx}$ is undefined.
2. $\dfrac{d}{dx} x^2 -3x + 2 = 2x -3$
3. Setting the derivative to zero, $0 = 2x - 3$
4. Solving for x, we get $x = \dfrac{3}{2}$. Three halves is a critical number because $