vault backup: 2024-09-13 16:23:00

This commit is contained in:
zleyyij 2024-09-13 16:23:00 -06:00
parent 3b4787f4c4
commit d5fbb8d908
4 changed files with 5 additions and 3 deletions

3
.obsidian/app.json vendored
View File

@ -8,5 +8,6 @@
"downscalePercent": 100
},
"spellcheck": true,
"focusNewTab": false
"focusNewTab": false,
"alwaysUpdateLinks": true
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@ -4,7 +4,7 @@ The unit circle has a center a $(0, 0)$, and a radius of $1$ with no defined uni
Sine and cosine can be used to find the coordinates of specific points on the unit circle.
**Sine likes $y$, and cosine likes $x$.**
![image](./assets/sincoscirc.png)
When sine is positive, the $y$ value is positive. When $x$ is positive, the cosine is positive.
$$ cos(\theta) = x $$
@ -15,7 +15,8 @@ $$ sin(\theta) = y $$
| ------ | --- | ------------------------------- | ------------------------------ | ------------------------------ |
| Cosine | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $0$ |
| Sine | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | <br>$1$ |
![image]()
![image](./assets/unitcirc.png)
## The Pythagorean Identity
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB