vault backup: 2025-02-18 10:01:11

This commit is contained in:
arc 2025-02-18 10:01:11 -07:00
parent 38e1b487ec
commit cc5fbfb289
2 changed files with 35 additions and 5 deletions

View File

@ -0,0 +1,27 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -152,15 +152,18 @@ This is used when you want to take the derivative of a function raised to a func
1. $\ln y = \ln (3x \sin x)^{3x}$
2. $\ln y = 3x * ln(2x \sin x)$*
3. $\dfrac{d}{dx} \ln(y) = \dfrac{d}{dx} 3x(\ln 2 + \ln x + \ln(sinx))$
4. $\dfrac{1}{y} \dfrac{dy}{dx} = 3(\ln 2 + \ln x + \ln(\sin(x))) + 3x (0 + \dfrac{1}{x} + \dfrac{1}{\sin x} * \cos x)$j
5. $\dfrac{dy}{dx} = (3\ln 2 + 3 \ln x + 3\ln \sin(x) + 3\ln(\sin(x) + 3x\cot(x))(2x\sin x)^{3x}$
# Chain Rule
$$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
## Examples
> Given the function $(x^2+3)^4$, find the derivative.
Using the chain rule, the above function might be described as $f(g(x))$, where $f(x) = x^4$, and $g(x) = x^2 + 3)$.
3. First find the derivative of the outside function function ($f(x) = x^4$):
6. First find the derivative of the outside function function ($f(x) = x^4$):
$$ \dfrac{d}{dx} (x^2 +3)^4 = 4(g(x))^3 ...$$
4. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$.
7. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$.
$$ \dfrac{d}{dx} (x^2 + 3)^4 = 4(x^2 + 3)^3 * (2x)$$
> Apply the chain rule to $x^4$
@ -196,7 +199,7 @@ $$ \dfrac{d}{dx} \cot x = -\csc^2 x $$
- Given the equation $y = x^2$, $\dfrac{d}{dx} y = \dfrac{dy}{dx} = 2x$.
Given these facts:
5. Let $y$ be some function of $x$
6. $\dfrac{d}{dx} x = 1$
7. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\
8. Let $y$ be some function of $x$
9. $\dfrac{d}{dx} x = 1$
10. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\