From cc5fbfb2896884b8f0ebdf99a5001982685f76c1 Mon Sep 17 00:00:00 2001 From: arc Date: Tue, 18 Feb 2025 10:01:11 -0700 Subject: [PATCH] vault backup: 2025-02-18 10:01:11 --- .obsidian/plugins/obsidian-git/data.json | 27 +++++++++++++++++++ .../math/MATH1210 (calc 1)/Derivatives.md | 13 +++++---- 2 files changed, 35 insertions(+), 5 deletions(-) diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index e69de29..bef4c6e 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -0,0 +1,27 @@ +{ + "commitMessage": "vault backup: {{date}}", + "autoCommitMessage": "vault backup: {{date}}", + "commitDateFormat": "YYYY-MM-DD HH:mm:ss", + "autoSaveInterval": 5, + "autoPushInterval": 0, + "autoPullInterval": 5, + "autoPullOnBoot": true, + "disablePush": false, + "pullBeforePush": true, + "disablePopups": false, + "listChangedFilesInMessageBody": false, + "showStatusBar": true, + "updateSubmodules": false, + "syncMethod": "merge", + "customMessageOnAutoBackup": false, + "autoBackupAfterFileChange": false, + "treeStructure": false, + "refreshSourceControl": true, + "basePath": "", + "differentIntervalCommitAndPush": false, + "changedFilesInStatusBar": false, + "showedMobileNotice": true, + "refreshSourceControlTimer": 7000, + "showBranchStatusBar": true, + "setLastSaveToLastCommit": false +} \ No newline at end of file diff --git a/education/math/MATH1210 (calc 1)/Derivatives.md b/education/math/MATH1210 (calc 1)/Derivatives.md index 6b6ed7e..4e517c8 100644 --- a/education/math/MATH1210 (calc 1)/Derivatives.md +++ b/education/math/MATH1210 (calc 1)/Derivatives.md @@ -152,15 +152,18 @@ This is used when you want to take the derivative of a function raised to a func 1. $\ln y = \ln (3x \sin x)^{3x}$ 2. $\ln y = 3x * ln(2x \sin x)$* +3. $\dfrac{d}{dx} \ln(y) = \dfrac{d}{dx} 3x(\ln 2 + \ln x + \ln(sinx))$ +4. $\dfrac{1}{y} \dfrac{dy}{dx} = 3(\ln 2 + \ln x + \ln(\sin(x))) + 3x (0 + \dfrac{1}{x} + \dfrac{1}{\sin x} * \cos x)$j +5. $\dfrac{dy}{dx} = (3\ln 2 + 3 \ln x + 3\ln \sin(x) + 3\ln(\sin(x) + 3x\cot(x))(2x\sin x)^{3x}$ # Chain Rule $$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$ ## Examples > Given the function $(x^2+3)^4$, find the derivative. Using the chain rule, the above function might be described as $f(g(x))$, where $f(x) = x^4$, and $g(x) = x^2 + 3)$. -3. First find the derivative of the outside function function ($f(x) = x^4$): +6. First find the derivative of the outside function function ($f(x) = x^4$): $$ \dfrac{d}{dx} (x^2 +3)^4 = 4(g(x))^3 ...$$ -4. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$. +7. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$. $$ \dfrac{d}{dx} (x^2 + 3)^4 = 4(x^2 + 3)^3 * (2x)$$ > Apply the chain rule to $x^4$ @@ -196,7 +199,7 @@ $$ \dfrac{d}{dx} \cot x = -\csc^2 x $$ - Given the equation $y = x^2$, $\dfrac{d}{dx} y = \dfrac{dy}{dx} = 2x$. Given these facts: -5. Let $y$ be some function of $x$ -6. $\dfrac{d}{dx} x = 1$ -7. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\ +8. Let $y$ be some function of $x$ +9. $\dfrac{d}{dx} x = 1$ +10. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\