vault backup: 2025-09-18 12:43:06
This commit is contained in:
@ -54,4 +54,14 @@ $$ \theta = \arctan(\frac{x}{2}) $$
|
|||||||
7. Rewriting the equation with $\theta$ in terms of x, we get:
|
7. Rewriting the equation with $\theta$ in terms of x, we get:
|
||||||
$$ \frac{3}{2}\arctan(\frac{x}{2}) + C$$
|
$$ \frac{3}{2}\arctan(\frac{x}{2}) + C$$
|
||||||
This means that:
|
This means that:
|
||||||
$$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$
|
$$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$
|
||||||
|
|
||||||
|
# A VERY LARGE LIST OF TRIG IDENTITIES FOR CALCULUS
|
||||||
|
|
||||||
|
| non calc identities<br> |
|
||||||
|
| ------------------------------------ |
|
||||||
|
| $\csc(x) = \dfrac{1}{sin(x)}$ |
|
||||||
|
| $\sec(x) = \dfrac{1}{\cos(x)}$ |
|
||||||
|
| $\cot(x) = \dfrac{1}{\tan(x)}$ |
|
||||||
|
| $\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ |
|
||||||
|
| $\sin^2(x) + \cos^2(x) = 1$ |
|
||||||
|
Reference in New Issue
Block a user