From 8d6c219f9eac269f40196ead0b89165205df5ae2 Mon Sep 17 00:00:00 2001 From: arc Date: Thu, 18 Sep 2025 12:43:06 -0600 Subject: [PATCH] vault backup: 2025-09-18 12:43:06 --- .../Integration with Trig Identities.md | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/education/math/MATH1220 (calc II)/Integration with Trig Identities.md b/education/math/MATH1220 (calc II)/Integration with Trig Identities.md index 9639429..c31cc1b 100644 --- a/education/math/MATH1220 (calc II)/Integration with Trig Identities.md +++ b/education/math/MATH1220 (calc II)/Integration with Trig Identities.md @@ -54,4 +54,14 @@ $$ \theta = \arctan(\frac{x}{2}) $$ 7. Rewriting the equation with $\theta$ in terms of x, we get: $$ \frac{3}{2}\arctan(\frac{x}{2}) + C$$ This means that: -$$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$ \ No newline at end of file +$$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$ + +# A VERY LARGE LIST OF TRIG IDENTITIES FOR CALCULUS + +| non calc identities
| +| ------------------------------------ | +| $\csc(x) = \dfrac{1}{sin(x)}$ | +| $\sec(x) = \dfrac{1}{\cos(x)}$ | +| $\cot(x) = \dfrac{1}{\tan(x)}$ | +| $\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ | +| $\sin^2(x) + \cos^2(x) = 1$ |