vault backup: 2024-09-23 11:51:45
This commit is contained in:
parent
67454454ac
commit
716bb343b1
10
education/math/MATH1060 (trig)/Graphing.md
Normal file
10
education/math/MATH1060 (trig)/Graphing.md
Normal file
@ -0,0 +1,10 @@
|
||||

|
||||
|
||||
Given the above graph:
|
||||
- At the origin, $sin(x) = 0$ and $cos(x) = 1$
|
||||
- A full wavelength takes $2\pi$
|
||||
|
||||
# Manipulation
|
||||
| Formula | Movement |
|
||||
| ------------------ | -------- |
|
||||
| $ y = cos(x) - 1 $ | |
|
@ -65,4 +65,6 @@ Applying the exponent gives us $\frac{49}{625}$, so we can do this:
|
||||
$$ \frac{625}{625} - \frac{49}{625} = \frac{576}{625} = sin^2\theta $$
|
||||
|
||||
Getting rid of the exponent:
|
||||
$$ \sqrt{\frac{576}{625}} = $$
|
||||
$$ \sqrt{\frac{576}{625}} = \frac{24}{25} = sin\theta $$
|
||||
|
||||
From there, you can find the rest of the identities fairly easily.
|
BIN
education/math/MATH1060 (trig)/assets/graphsincos.png
Normal file
BIN
education/math/MATH1060 (trig)/assets/graphsincos.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
Loading…
x
Reference in New Issue
Block a user