diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md new file mode 100644 index 0000000..b1a9603 --- /dev/null +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -0,0 +1,10 @@ +![A graph of sine and cosine](./assets/graphsincos.png) + +Given the above graph: +- At the origin, $sin(x) = 0$ and $cos(x) = 1$ +- A full wavelength takes $2\pi$ + +# Manipulation +| Formula | Movement | +| ------------------ | -------- | +| $ y = cos(x) - 1 $ | | diff --git a/education/math/MATH1060 (trig)/Identities.md b/education/math/MATH1060 (trig)/Identities.md index 3ed3245..f45f19a 100644 --- a/education/math/MATH1060 (trig)/Identities.md +++ b/education/math/MATH1060 (trig)/Identities.md @@ -65,4 +65,6 @@ Applying the exponent gives us $\frac{49}{625}$, so we can do this: $$ \frac{625}{625} - \frac{49}{625} = \frac{576}{625} = sin^2\theta $$ Getting rid of the exponent: -$$ \sqrt{\frac{576}{625}} = $$ +$$ \sqrt{\frac{576}{625}} = \frac{24}{25} = sin\theta $$ + +From there, you can find the rest of the identities fairly easily. \ No newline at end of file diff --git a/education/math/MATH1060 (trig)/assets/graphsincos.png b/education/math/MATH1060 (trig)/assets/graphsincos.png new file mode 100644 index 0000000..8adaf60 Binary files /dev/null and b/education/math/MATH1060 (trig)/assets/graphsincos.png differ