vault backup: 2024-09-23 11:25:52

This commit is contained in:
zleyyij 2024-09-23 11:25:52 -06:00
parent 4bea0ad374
commit 481b58fe54

View File

@ -44,4 +44,11 @@ If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the ot
Using the trig identity $1 + tan^2\theta = cot^2\theta$, we can do this: Using the trig identity $1 + tan^2\theta = cot^2\theta$, we can do this:
$$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$ $$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$
$25^2 Shuffling things around, we get this:
$$ tan^2\theta = \frac{625}{49} - 1 $$
Performing that subtraction gives us this:
$$ \frac{625}{49} - \frac{49}{49} = \frac{576}{49} = tan^2\theta $$
You can get rid of the exponent:
$$ \frac{576}{49}