vault backup: 2024-09-23 11:25:52
This commit is contained in:
parent
4bea0ad374
commit
481b58fe54
@ -44,4 +44,11 @@ If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the ot
|
||||
|
||||
Using the trig identity $1 + tan^2\theta = cot^2\theta$, we can do this:
|
||||
$$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$
|
||||
$25^2
|
||||
Shuffling things around, we get this:
|
||||
$$ tan^2\theta = \frac{625}{49} - 1 $$
|
||||
|
||||
Performing that subtraction gives us this:
|
||||
$$ \frac{625}{49} - \frac{49}{49} = \frac{576}{49} = tan^2\theta $$
|
||||
You can get rid of the exponent:
|
||||
|
||||
$$ \frac{576}{49}
|
Loading…
Reference in New Issue
Block a user