vault backup: 2025-04-01 09:58:23

This commit is contained in:
arc 2025-04-01 09:58:23 -06:00
parent 56f0fa193b
commit 155b7dc6af

View File

@ -89,4 +89,5 @@ $$\int_a^b f(x) dx = F(b) - F(a)$$
2. Let $f$ be a continuous function on $[a, b]$ and let $x$ be a point in $[a, b]$.
$$ F(x) = \int_a^x f(t)dt \Rightarrow F'(x) = f(x) $$
$$ \dfrac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) * g'(x)* $$
$$ \dfrac{d}{dx} \int_2^{7x} \cos(t^2) dt = $$
$$ \dfrac{d}{dx} \int_2^{7x} \cos(t^2) dt = cos((7x)^2) * 7 = 7\cos(49x^2)$$
$$ \dfrac{d}{dx}\int_0^{\ln{x}}\tan(t) = \tan(\ln(x))*\dfrac{1}{x} $$