vault backup: 2025-04-01 09:53:23

This commit is contained in:
arc 2025-04-01 09:53:23 -06:00
parent 7d7562e27c
commit 56f0fa193b

View File

@ -87,4 +87,6 @@ Average = $\dfrac{1}{b-a} \int_a^b f(x)dx$
1. Let $f$ be a continuous function on the closed interval $[a, b]$ and let $F$ be any antiderivative of $f$, then:
$$\int_a^b f(x) dx = F(b) - F(a)$$
2. Let $f$ be a continuous function on $[a, b]$ and let $x$ be a point in $[a, b]$.
$$ F(x) = \int_a^x f(t)dt \Rightarrow F'(x) = f(x) $$
$$ F(x) = \int_a^x f(t)dt \Rightarrow F'(x) = f(x) $$
$$ \dfrac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) * g'(x)* $$
$$ \dfrac{d}{dx} \int_2^{7x} \cos(t^2) dt = $$