vault backup: 2025-01-10 09:42:02
This commit is contained in:
parent
905e49b4d7
commit
132af086cb
@ -1,7 +1,7 @@
|
||||
|
||||
![](./assets/logic-gates.jpeg)
|
||||
# NOT Gate
|
||||
A binary NOT gate has a single input, and inverts that input.
|
||||
A binary NOT gate has a single input, and inverts that input (output is not the input).
|
||||
|
||||
## Truth Table
|
||||
| $x$ | $y$ |
|
||||
@ -12,7 +12,7 @@ A binary NOT gate has a single input, and inverts that input.
|
||||
A NOT operation is mathematically expressed using a bar:
|
||||
$$ y = \bar{x} $$
|
||||
# AND Gate
|
||||
An AND gate will only output a 1 if *both* inputs are a one.
|
||||
An AND gate will only output a 1 if *both* inputs are a one (input one *and* input two are enabled).
|
||||
|
||||
## Truth Table
|
||||
| $x_1$ | $x_2$ | $y$ |
|
||||
@ -26,7 +26,7 @@ An AND operation is mathematically expressed using a times symbol, or with no sy
|
||||
$$ y = x_1 \cdot x_2 = x_1x_2$$
|
||||
|
||||
# NAND Gate
|
||||
A NAND gate outputs a 1 *unless* both inputs are enabled.
|
||||
A NAND gate outputs a 1 *unless* both inputs are enabled (input one *and* input two are *not* enabled).
|
||||
|
||||
## Truth Table
|
||||
| $x_1$ | $x_2$ | $y$ |
|
||||
@ -41,7 +41,7 @@ $$ y = \overline{x_1 \cdot x_2}$$
|
||||
|
||||
|
||||
# OR Gate
|
||||
An OR gate outputs a 1 if either or both inputs are enabled.
|
||||
An OR gate outputs a 1 if either or both inputs are enabled (if input one *or* input two is enabled).
|
||||
## Truth Table
|
||||
| $x_1$ | $x_2$ | $y$ |
|
||||
| ----- | ----- | --- |
|
||||
@ -53,3 +53,6 @@ An OR gate outputs a 1 if either or both inputs are enabled.
|
||||
A mathematical OR is notated with a $+$ symbol.
|
||||
|
||||
$$ y = x_1 + x_2 $$
|
||||
# NOR Gate
|
||||
A NOR gate outputs a one if neither gate is enabled.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user