diff --git a/education/computer engineering/ECE2700/Binary Logic.md b/education/computer engineering/ECE2700/Binary Logic.md index 13a6297..96c8375 100644 --- a/education/computer engineering/ECE2700/Binary Logic.md +++ b/education/computer engineering/ECE2700/Binary Logic.md @@ -1,7 +1,7 @@ ![](./assets/logic-gates.jpeg) # NOT Gate -A binary NOT gate has a single input, and inverts that input. +A binary NOT gate has a single input, and inverts that input (output is not the input). ## Truth Table | $x$ | $y$ | @@ -12,7 +12,7 @@ A binary NOT gate has a single input, and inverts that input. A NOT operation is mathematically expressed using a bar: $$ y = \bar{x} $$ # AND Gate -An AND gate will only output a 1 if *both* inputs are a one. +An AND gate will only output a 1 if *both* inputs are a one (input one *and* input two are enabled). ## Truth Table | $x_1$ | $x_2$ | $y$ | @@ -26,7 +26,7 @@ An AND operation is mathematically expressed using a times symbol, or with no sy $$ y = x_1 \cdot x_2 = x_1x_2$$ # NAND Gate -A NAND gate outputs a 1 *unless* both inputs are enabled. +A NAND gate outputs a 1 *unless* both inputs are enabled (input one *and* input two are *not* enabled). ## Truth Table | $x_1$ | $x_2$ | $y$ | @@ -41,7 +41,7 @@ $$ y = \overline{x_1 \cdot x_2}$$ # OR Gate -An OR gate outputs a 1 if either or both inputs are enabled. +An OR gate outputs a 1 if either or both inputs are enabled (if input one *or* input two is enabled). ## Truth Table | $x_1$ | $x_2$ | $y$ | | ----- | ----- | --- | @@ -53,3 +53,6 @@ An OR gate outputs a 1 if either or both inputs are enabled. A mathematical OR is notated with a $+$ symbol. $$ y = x_1 + x_2 $$ +# NOR Gate +A NOR gate outputs a one if neither gate is enabled. +