2024-09-09 16:32:51 +00:00
# Introduction
The unit circle has a center a $(0, 0)$, and a radius of $1$ with no defined unit.
2024-09-09 16:37:51 +00:00
Sine and cosine can be used to find the coordinates of specific points on the unit circle.
**Sine likes $y$, and cosine likes $x$.**
2024-09-13 22:23:00 +00:00
![image ](./assets/sincoscirc.png )
2024-09-09 16:37:51 +00:00
When sine is positive, the $y$ value is positive. When $x$ is positive, the cosine is positive.
2024-09-09 16:42:51 +00:00
$$ cos(\theta) = x $$
$$ sin(\theta) = y $$
2024-09-13 22:07:59 +00:00
## Sine and Cosine
2024-09-13 22:18:00 +00:00
| Angle | $0$ | $\frac{\pi}{6}$ or $30 \degree$ | $\frac{\pi}{4}$ or $45\degree$ | $\frac{\pi}{2}$ or $90\degree$ |
| ------ | --- | ------------------------------- | ------------------------------ | ------------------------------ |
| Cosine | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $0$ |
| Sine | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | < br > $1$ |
2024-09-13 22:23:00 +00:00
![image ](./assets/unitcirc.png )
2024-09-13 22:07:59 +00:00
2024-09-09 16:42:51 +00:00
## The Pythagorean Identity
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.
$$ sin^2 \theta + cos^2 \theta = 1 $$
2024-09-09 16:32:51 +00:00
# Definitions
2024-09-09 16:37:51 +00:00
| Term | Description |
| ---------------- | ----------------------------------------------------------------------------- |
| $\theta$ (theta) | Theta refers to the angle measure in a unit circle. |
| $s$ | $s$ is used to the length of the arc created by angle $\theta$ on the circle. |