2024-09-30 16:48:24 +00:00
# Sine/Cosine
2024-09-23 17:51:45 +00:00
![A graph of sine and cosine ](./assets/graphsincos.png )
Given the above graph:
- At the origin, $sin(x) = 0$ and $cos(x) = 1$
- A full wavelength takes $2\pi$
# Manipulation
2024-09-23 18:01:19 +00:00
| Formula | Movement |
| ---------------- | ---------------------------------- |
| $y = cos(x) - 1$ | Vertical shift down by 1 |
| $y = 2cos(x)$ | Vertical stretch by a factor of 2 |
| $y = -cos(x)$ | Flip over x axis |
| $y = cos(2x)$ | Horizontal shrink by a factor of 2 |
# Periodic Functions
A function is considered periodic if it repeats itself at even intervals, where each interval is a complete cycle, referred to as a *period* .
2024-09-26 14:27:06 +00:00
# Sinusoidal Functions
A function that has the same shape as a sine or cosine wave is known as a sinusoidal function.
2024-09-26 14:33:33 +00:00
There are 4 general functions:
2024-09-26 14:38:33 +00:00
2024-09-26 14:48:33 +00:00
| $$A * sin(B*x - C) + D$$ | $$ y = A * cos(B*x -c) + D$$ |
| ----------------------------------------- | -------------------------------------- |
| $$ y = A * sin(B(x - \frac{C}{B})) + D $$ | $$ y = A*cos(B(x - \frac{C}{B})) + D$$ |
2024-09-26 14:38:33 +00:00
2024-09-26 15:13:33 +00:00
How to find the:
- Amplitude: $|A|$
- Period: $\frac{2\pi}{B}$
- Phase shift: $\frac{C}{|B|}$
- Vertical shift: $D$
2024-09-26 14:27:06 +00:00
2024-09-30 16:48:24 +00:00
$$ y = A * \sin(B(x-\frac{C}{B})) $$
2024-09-30 17:08:24 +00:00
# Tangent
2024-09-30 16:53:24 +00:00
$$ y = tan(x) $$
![Graph of tangent ](assets/graphtan.png )
To find relative points to create the above graph, you can use the unit circle:
2024-09-30 16:48:24 +00:00
2024-09-30 16:53:24 +00:00
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
2024-09-30 17:03:24 +00:00
| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
Interpreting the above table:
- When $x = 0$, $y = 0$
- When $x = \frac{\pi}{4}$, $y = 1$
- When $x = \frac{\pi}{2}$, there's an asymptote
2024-09-30 17:18:24 +00:00
Without any transformations applied, the period of $tan(x) = \pi$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$.
2024-09-30 17:08:24 +00:00
# Cotangent
2024-09-30 16:53:24 +00:00
$$ y = cot(x) $$
![Graph of cotangent ](assets/graphcot.svg )
2024-09-30 17:08:24 +00:00
To find relative points to create the above graph, you can use the unit circle:
2024-09-30 17:13:24 +00:00
If $cot(x) = \frac{cos(x)}{sin(x)}$, then:
| $sin(0) = 0$ | $cos(0) = 1$ | $cot(0) = \frac{sin(0)}{cos(0)} = \frac{1}{0} = DNF$ |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cot(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
2024-09-30 17:18:24 +00:00
Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$.
2024-09-30 17:23:24 +00:00
# Features of Tangent and Cotangent
Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$)
- The stretching factor is $|A|$
- The period is $\frac{\pi}{|B|}$
2024-09-30 17:28:24 +00:00
- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|B|}k$, where $k$ is an integer. (everywhere but the asymptotes)
- The domain of $cot$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{|B|}k$, where $k$ is an integer (everywhere but the asymptotes)
- The range of both is $(-\infty, \infty)$
- The phase shift is $\frac{C}{B}$
- The vertical shift is $D$
2024-10-02 16:47:50 +00:00
2024-10-02 16:52:50 +00:00
# Secant
2024-10-02 17:02:50 +00:00
$$ y = \sec(x) $$
2024-10-02 16:52:50 +00:00
![Graph of secant ](assets/graphsec.jpg )
2024-10-02 16:57:50 +00:00
$$ sec(x) = \frac{1}{\cos{x}} $$
2024-10-02 17:02:50 +00:00
Because secant is the reciprocal of cosine, when $\cos{x} = 0$, then secant is undefined. $|\cos$| is never *greater than* 1, so secant is never *less than* 1 in absolute value. When the graph of cosine crosses the x axis, an asymptote for a matching graph of secant will appear there.
The general form of secant is:
$$ y = A\sec(B{x} - C) + D $$
$A$, $B$, $C$, and $D$ will have similar meanings to the secant functions as they did to the sine and cosine functions.
# Cosecant
$$ y = \csc(x) $$
2024-10-02 16:52:50 +00:00
2024-09-30 17:18:24 +00:00
# Examples
2024-09-30 17:38:24 +00:00
> Given $-2\tan(\pi*x + \pi) - 1$
2024-09-30 17:33:24 +00:00
$A = -2$, $B = \pi$, $C = -\pi$, $D = -1$
2024-09-30 17:38:24 +00:00
2024-09-30 17:33:24 +00:00
| Transformation | Equation |
| -------------- | ------------------------- |
| Stretch | $\|-2\| = 2$ |
| Period | $\frac{\pi}{\|\pi\|} = 1$ |
2024-09-30 17:38:24 +00:00
| Phase shift | $\frac{-\pi}{\pi} = -1$ |
| Vertical shift | $-1$ |