vault backup: 2024-09-30 11:28:24
This commit is contained in:
parent
701bcf87aa
commit
5a3c1486fb
@ -69,8 +69,15 @@ Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$
|
||||
Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$)
|
||||
- The stretching factor is $|A|$
|
||||
- The period is $\frac{\pi}{|B|}$
|
||||
- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|}$
|
||||
- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|B|}k$, where $k$ is an integer. (everywhere but the asymptotes)
|
||||
- The domain of $cot$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{|B|}k$, where $k$ is an integer (everywhere but the asymptotes)
|
||||
- The range of both is $(-\infty, \infty)$
|
||||
- The phase shift is $\frac{C}{B}$
|
||||
- The vertical shift is $D$
|
||||
# Examples
|
||||
> Given $-2tan(\pi*x + \pi) - 1$
|
||||
- $A = -2$, $B = \pi$, $C = -\pi$, $D = -1$
|
||||
- Stretch
|
||||
- Stretch: $|-2| = 2$
|
||||
- Period: $\frac{\pi}{|\pi|} = 1$
|
||||
- Phase shift: $\frac{-\pi}{\pi} = -1$
|
||||
- Vertical shift: $
|
Loading…
Reference in New Issue
Block a user