notes/education/computer engineering/ECE2700/Binary Logic.md

124 lines
7.3 KiB
Markdown
Raw Normal View History

2025-01-13 19:45:49 +00:00
# History of Boolean Algebra
- In 1849, George Boole published a scheme for describing logical thought and reasoning
- In the 1930s, Claude Shannon applied Boolean algebra to describe circuits built with switches
- Boolean algebra provides the theoretical foundation for digital design
2025-01-13 16:37:25 +00:00
# Properties of Boolean Algebra
2025-01-13 19:40:49 +00:00
| Number | Col. A | Col. A Description | Col. B | Col. B Description |
| ---------------------- | --------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------- | ------------------ |
| 1. | $0 \cdot 0 = 0$ | | $1 + 1 = 1$ | |
| 2. | $1 \cdot 1 = 1$ | | $0 + 0 = 0$ | |
| 3. | $0 \cdot 1 = 1 \cdot 0 = 0$ | | $1 + 0 = 0 + 1 = 1$ | |
| 4. | if $x = 0$ then $\overline{x} = 1$ | | if $x = 1$ then $\overline{x} = 0$ | |
| 5. | $x \cdot 0 = 0$ | | $x + 1 = 1$ | |
| 6. | $x \cdot 1 = x$ | | $x + 0 = x$ | |
| 7. | $x \cdot x = x$ | | $x + x = x$ | |
| 8. | $x \cdot \overline{x} = 0$ | | $$x + \overline{x} = 1$ | |
| 9. | $\overline{\overline{x}} = x$ | | | |
| 10. Commutative | $x \cdot y = y \cdot x$ | | $x + y = y + x$ | |
| 11. Associative | $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ | | $x + (y + z) = (x + y) +z$ | |
| 12. Distributive | $x \cdot (y +z) = x \cdot y + x \cdot z$ | | $x + y \cdot z = (x + y) \cdot (x + z$ | |
| 13. Absorption | $x + x \cdot y = x$ | | $x \cdot (x + y) = x$ | |
| 14. Combining | $x \cdot y + x \cdot \overline{y} = x$ | | $(x + y) \cdot (x + \overline{y}) = x$ | |
| 15. DeMorgan's Theorem | $\overline{x \cdot y} = \overline{x} + \overline{y}$ | | $x + y = \overline{x} \cdot \overline{y}$ | |
| 16. | $x + \overline{x} \cdot y = x + y$ | | $x \cdot (\overline{x} + y) = x \cdot y$ | |
| 17. Consensus | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ | | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ | |
2025-01-13 20:09:26 +00:00
# Synthesis
2025-01-13 16:37:25 +00:00
# Logic Gates
2025-01-09 21:12:03 +00:00
2025-01-10 16:17:02 +00:00
![](./assets/logic-gates.jpeg)
# NOT Gate
2025-01-10 16:42:03 +00:00
A binary NOT gate has a single input, and inverts that input (output is not the input).
2025-01-10 16:17:02 +00:00
## Truth Table
| $x$ | $y$ |
| --- | --- |
2025-01-10 16:22:02 +00:00
| 0 | 1 |
| 1 | 0 |
2025-01-10 16:27:02 +00:00
## Mathematical Expression
2025-01-10 16:22:02 +00:00
A NOT operation is mathematically expressed using a bar:
$$ y = \bar{x} $$
# AND Gate
2025-01-10 16:42:03 +00:00
An AND gate will only output a 1 if *both* inputs are a one (input one *and* input two are enabled).
2025-01-10 16:22:02 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
2025-01-10 16:27:02 +00:00
## Mathematical Expression
2025-01-10 16:32:02 +00:00
An AND operation is mathematically expressed using a times symbol, or with no symbol at all:
2025-01-10 16:27:02 +00:00
$$ y = x_1 \cdot x_2 = x_1x_2$$
# NAND Gate
2025-01-10 16:42:03 +00:00
A NAND gate outputs a 1 *unless* both inputs are enabled (input one *and* input two are *not* enabled).
2025-01-10 16:27:02 +00:00
## Truth Table
2025-01-10 16:32:02 +00:00
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
## Mathematical Expression
A NAND operation is mathematically expressed using a bar over an AND operation:
$$ y = \overline{x_1 \cdot x_2}$$
2025-01-10 16:37:02 +00:00
# OR Gate
2025-01-10 16:42:03 +00:00
An OR gate outputs a 1 if either or both inputs are enabled (if input one *or* input two is enabled).
2025-01-10 16:37:02 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
## Mathematical Expression
A mathematical OR is notated with a $+$ symbol.
$$ y = x_1 + x_2 $$
2025-01-10 16:42:03 +00:00
# NOR Gate
A NOR gate outputs a one if neither gate is enabled.
2025-01-10 16:52:03 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y_1$ |
| ----- | ----- | ----- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |
## Mathematical Expression
2025-01-10 16:57:03 +00:00
A NOR operation is expressed using a bar over an OR operation.
$$ y = \overline{x_1 + x_2} $$
# XOR Gate
An XOR gate is on if one input is enabled, but *not* both (exclusively one or the other).
2025-01-10 16:42:03 +00:00
2025-01-10 16:57:03 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
## Mathematical Expression
An XOR operation is expressed using a circle around an addition symbol:
$$ y = x_1 \oplus x_2 $$
## XNOR Gate
2025-01-10 17:02:03 +00:00
An XNOR gate is on if neither input is enabled, or both inputs are enabled.
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
## Mathematical Expression
An XNOR operation is expressed using a bar over an XOR operation:
$$ y = \overline{x_1 \oplus x_2} $$