notes/education/computer engineering/ECE2700/Binary Logic.md

103 lines
2.8 KiB
Markdown
Raw Normal View History

2025-01-13 16:37:25 +00:00
# Properties of Boolean Algebra
| $0 \cdot 0 = 0$ | $1 + 1 = 1$ |
| --------------------------- | ----------- |
| $1 \cdot 1 = 1$ | $0 + 0 = 0$ |
| $0 \cdot 1 = 1 \cdot 0 = 0$ | |
# Logic Gates
2025-01-09 21:12:03 +00:00
2025-01-10 16:17:02 +00:00
![](./assets/logic-gates.jpeg)
# NOT Gate
2025-01-10 16:42:03 +00:00
A binary NOT gate has a single input, and inverts that input (output is not the input).
2025-01-10 16:17:02 +00:00
## Truth Table
| $x$ | $y$ |
| --- | --- |
2025-01-10 16:22:02 +00:00
| 0 | 1 |
| 1 | 0 |
2025-01-10 16:27:02 +00:00
## Mathematical Expression
2025-01-10 16:22:02 +00:00
A NOT operation is mathematically expressed using a bar:
$$ y = \bar{x} $$
# AND Gate
2025-01-10 16:42:03 +00:00
An AND gate will only output a 1 if *both* inputs are a one (input one *and* input two are enabled).
2025-01-10 16:22:02 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
2025-01-10 16:27:02 +00:00
## Mathematical Expression
2025-01-10 16:32:02 +00:00
An AND operation is mathematically expressed using a times symbol, or with no symbol at all:
2025-01-10 16:27:02 +00:00
$$ y = x_1 \cdot x_2 = x_1x_2$$
# NAND Gate
2025-01-10 16:42:03 +00:00
A NAND gate outputs a 1 *unless* both inputs are enabled (input one *and* input two are *not* enabled).
2025-01-10 16:27:02 +00:00
## Truth Table
2025-01-10 16:32:02 +00:00
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
## Mathematical Expression
A NAND operation is mathematically expressed using a bar over an AND operation:
$$ y = \overline{x_1 \cdot x_2}$$
2025-01-10 16:37:02 +00:00
# OR Gate
2025-01-10 16:42:03 +00:00
An OR gate outputs a 1 if either or both inputs are enabled (if input one *or* input two is enabled).
2025-01-10 16:37:02 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
## Mathematical Expression
A mathematical OR is notated with a $+$ symbol.
$$ y = x_1 + x_2 $$
2025-01-10 16:42:03 +00:00
# NOR Gate
A NOR gate outputs a one if neither gate is enabled.
2025-01-10 16:52:03 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y_1$ |
| ----- | ----- | ----- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |
## Mathematical Expression
2025-01-10 16:57:03 +00:00
A NOR operation is expressed using a bar over an OR operation.
$$ y = \overline{x_1 + x_2} $$
# XOR Gate
An XOR gate is on if one input is enabled, but *not* both (exclusively one or the other).
2025-01-10 16:42:03 +00:00
2025-01-10 16:57:03 +00:00
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
## Mathematical Expression
An XOR operation is expressed using a circle around an addition symbol:
$$ y = x_1 \oplus x_2 $$
## XNOR Gate
2025-01-10 17:02:03 +00:00
An XNOR gate is on if neither input is enabled, or both inputs are enabled.
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
## Mathematical Expression
An XNOR operation is expressed using a bar over an XOR operation:
$$ y = \overline{x_1 \oplus x_2} $$