1.5 KiB
1.5 KiB
The integration by parts formula is:
\int udv = uv - \int vdu
Deriving the Integration by Parts Formula
\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)
- Integrating both sides, we get:
\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]
- Through the distributive property of integrals,
= \int f'(x)g(x)dx + \int f(x)g'(x)dx
- An integral cancels out an antiderivative, therefore:
f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx
- Moving terms around:
\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx
Now, let u = f(x)
and v = g(x)
, then dv = g'(x)dx
and du = f'(x)dx
.
Examples
Evaluate the below antiderivative using integration by parts.
\int xe^{2x}dx
- Define
u
to be a value you can take the derivative of easily, in this caseu = x
. The rest of the integral will be set todv
, in this case,dv = e^{2x}dx
.u = x
du = \frac{d}{dx}(x)= 1dx
dv = e^{2x}dx
v = \frac{1}{2}e^{2x}
- The antiderivative ofdv
.
- Looking back at the integration by parts formula, we know that:
\int udv = uv - \int v du $
\int xe^{2x}dx = (\frac{1}{2}e^{2x})(x)-\int (\frac{1}{2}e^{2x}) (1dx) $
- The remaining integral can be solved with
u
substitution, but we've already definedu
, so we usew
as a replacement.w = 2x
dw = 2dx
\frac{1}{2}dw=dx
- Substituting
w
anddw
into the integral:
int \frac{1}{2}e^w \frac{1}{2}dw $$
- This gives an integral that can be computed naively
int\frac{1}{2}e^{w} $$
- Substituting