49 lines
1.6 KiB
Markdown
49 lines
1.6 KiB
Markdown
|
|
# Sine/Cosine
|
|
![A graph of sine and cosine](./assets/graphsincos.png)
|
|
|
|
Given the above graph:
|
|
- At the origin, $sin(x) = 0$ and $cos(x) = 1$
|
|
- A full wavelength takes $2\pi$
|
|
|
|
# Manipulation
|
|
| Formula | Movement |
|
|
| ---------------- | ---------------------------------- |
|
|
| $y = cos(x) - 1$ | Vertical shift down by 1 |
|
|
| $y = 2cos(x)$ | Vertical stretch by a factor of 2 |
|
|
| $y = -cos(x)$ | Flip over x axis |
|
|
| $y = cos(2x)$ | Horizontal shrink by a factor of 2 |
|
|
# Periodic Functions
|
|
A function is considered periodic if it repeats itself at even intervals, where each interval is a complete cycle, referred to as a *period*.
|
|
# Sinusoidal Functions
|
|
A function that has the same shape as a sine or cosine wave is known as a sinusoidal function.
|
|
|
|
There are 4 general functions:
|
|
|
|
| $$A * sin(B*x - C) + D$$ | $$ y = A * cos(B*x -c) + D$$ |
|
|
| ----------------------------------------- | -------------------------------------- |
|
|
| $$ y = A * sin(B(x - \frac{C}{B})) + D $$ | $$ y = A*cos(B(x - \frac{C}{B})) + D$$ |
|
|
|
|
|
|
How to find the:
|
|
- Amplitude: $|A|$
|
|
- Period: $\frac{2\pi}{B}$
|
|
- Phase shift: $\frac{C}{|B|}$
|
|
- Vertical shift: $D$
|
|
|
|
|
|
$$ y = A * \sin(B(x-\frac{C}{B})) $$
|
|
# Tangent/Cotangent
|
|
$$ y = tan(x) $$
|
|
![Graph of tangent](assets/graphtan.png)
|
|
To find relative points to create the above graph, you can use the unit circle:
|
|
|
|
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
|
|
|
|
| $sin(0)$ | | |
|
|
| -------- | --- | --- |
|
|
| | | |
|
|
|
|
$$ y = cot(x) $$
|
|
![Graph of cotangent](assets/graphcot.svg)
|