76 lines
3.6 KiB
Markdown
76 lines
3.6 KiB
Markdown
|
|
# Sine/Cosine
|
|
![A graph of sine and cosine](./assets/graphsincos.png)
|
|
|
|
Given the above graph:
|
|
- At the origin, $sin(x) = 0$ and $cos(x) = 1$
|
|
- A full wavelength takes $2\pi$
|
|
|
|
# Manipulation
|
|
| Formula | Movement |
|
|
| ---------------- | ---------------------------------- |
|
|
| $y = cos(x) - 1$ | Vertical shift down by 1 |
|
|
| $y = 2cos(x)$ | Vertical stretch by a factor of 2 |
|
|
| $y = -cos(x)$ | Flip over x axis |
|
|
| $y = cos(2x)$ | Horizontal shrink by a factor of 2 |
|
|
# Periodic Functions
|
|
A function is considered periodic if it repeats itself at even intervals, where each interval is a complete cycle, referred to as a *period*.
|
|
# Sinusoidal Functions
|
|
A function that has the same shape as a sine or cosine wave is known as a sinusoidal function.
|
|
|
|
There are 4 general functions:
|
|
|
|
| $$A * sin(B*x - C) + D$$ | $$ y = A * cos(B*x -c) + D$$ |
|
|
| ----------------------------------------- | -------------------------------------- |
|
|
| $$ y = A * sin(B(x - \frac{C}{B})) + D $$ | $$ y = A*cos(B(x - \frac{C}{B})) + D$$ |
|
|
|
|
|
|
How to find the:
|
|
- Amplitude: $|A|$
|
|
- Period: $\frac{2\pi}{B}$
|
|
- Phase shift: $\frac{C}{|B|}$
|
|
- Vertical shift: $D$
|
|
|
|
|
|
$$ y = A * \sin(B(x-\frac{C}{B})) $$
|
|
# Tangent
|
|
$$ y = tan(x) $$
|
|
![Graph of tangent](assets/graphtan.png)
|
|
To find relative points to create the above graph, you can use the unit circle:
|
|
|
|
If $tan(x) = \frac{sin(x)}{cos(x})$, then:
|
|
|
|
| $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ |
|
|
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
|
|
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
|
|
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
|
|
Interpreting the above table:
|
|
- When $x = 0$, $y = 0$
|
|
- When $x = \frac{\pi}{4}$, $y = 1$
|
|
- When $x = \frac{\pi}{2}$, there's an asymptote
|
|
|
|
Without any transformations applied, the period of $tan(x) = \pi$. Because $tan$ is an odd function, $tan(-x) = -tan(x)$.
|
|
# Cotangent
|
|
$$ y = cot(x) $$
|
|
![Graph of cotangent](assets/graphcot.svg)
|
|
|
|
To find relative points to create the above graph, you can use the unit circle:
|
|
|
|
If $cot(x) = \frac{cos(x)}{sin(x)}$, then:
|
|
|
|
| $sin(0) = 0$ | $cos(0) = 1$ | $cot(0) = \frac{sin(0)}{cos(0)} = \frac{1}{0} = DNF$ |
|
|
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------------------------- |
|
|
| $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cot(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}/\frac{\sqrt{2}}{2} = 1$ |
|
|
| $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | $tan(\frac{\pi}{2}) = \frac{1}{0} = DNF$ |
|
|
|
|
Without any transformations applied, the period of $cot(x) = \pi$. Because $cot$ is an odd function, $cot(-x) = -cot(x)$.
|
|
|
|
# Features of Tangent and Cotangent
|
|
Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$)
|
|
- The stretching factor is $|A|$
|
|
- The period is $\frac{\pi}{|B|}$
|
|
- The domain of $tan$ is all of $x$, where $x \ne \frac{C}{B} + \frac{\pi}{2} + {\pi}{|}$
|
|
# Examples
|
|
> Given $-2tan(\pi*x + \pi) - 1$
|
|
- $A = -2$, $B = \pi$, $C = -\pi$, $D = -1$
|
|
- Stretch |