5.0 KiB
Properties of Boolean Algebra
Number | Col. A | Col. A Description | Col. B | Col. B Description |
---|---|---|---|---|
1. | 0 \cdot 0 = 0 |
1 + 1 = 1 |
||
2. | 1 \cdot 1 = 1 |
0 + 0 = 0 |
||
3. | 0 \cdot 1 = 1 \cdot 0 = 0 |
1 + 0 = 0 + 1 = 1 |
||
4. | if x = 0 then \overline{x} = 1 |
if x = 1 then \overline{x} = 0 |
||
5. | x \cdot 0 = 0 |
x + 1 = 1 |
||
6. | x \cdot 1 = x |
x + 0 = x |
||
7. | x \cdot x = x |
x + x = x |
||
8. | x \cdot \overline{x} = 0 |
$x + \overline{x} = 1 |
||
9. | $\overline{\overline{x}} = | |||
10. | ||||
11. | ||||
12. | ||||
13. | ||||
14. | ||||
15. | ||||
16. | ||||
17. |
Logic Gates
NOT Gate
A binary NOT gate has a single input, and inverts that input (output is not the input).
Truth Table
x |
y |
---|---|
0 | 1 |
1 | 0 |
Mathematical Expression
A NOT operation is mathematically expressed using a bar:
y = \bar{x}
AND Gate
An AND gate will only output a 1 if both inputs are a one (input one and input two are enabled).
Truth Table
x_1 |
x_2 |
y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Mathematical Expression
An AND operation is mathematically expressed using a times symbol, or with no symbol at all:
y = x_1 \cdot x_2 = x_1x_2
NAND Gate
A NAND gate outputs a 1 unless both inputs are enabled (input one and input two are not enabled).
Truth Table
x_1 |
x_2 |
y |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Mathematical Expression
A NAND operation is mathematically expressed using a bar over an AND operation:
y = \overline{x_1 \cdot x_2}
OR Gate
An OR gate outputs a 1 if either or both inputs are enabled (if input one or input two is enabled).
Truth Table
x_1 |
x_2 |
y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Mathematical Expression
A mathematical OR is notated with a +
symbol.
y = x_1 + x_2
NOR Gate
A NOR gate outputs a one if neither gate is enabled.
Truth Table
x_1 |
x_2 |
y_1 |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
Mathematical Expression
A NOR operation is expressed using a bar over an OR operation.
y = \overline{x_1 + x_2}
XOR Gate
An XOR gate is on if one input is enabled, but not both (exclusively one or the other).
Truth Table
x_1 |
x_2 |
y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Mathematical Expression
An XOR operation is expressed using a circle around an addition symbol:
y = x_1 \oplus x_2
XNOR Gate
An XNOR gate is on if neither input is enabled, or both inputs are enabled.
Truth Table
x_1 |
x_2 |
y |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Mathematical Expression
An XNOR operation is expressed using a bar over an XOR operation:
y = \overline{x_1 \oplus x_2}