1.4 KiB
1.4 KiB
The below integration makes use of the following trig identities:
- The Pythagorean identity:
\sin^2(x) + \cos^2(x) = 1
- The derivative of sine:
\frac{d}{dx}sin(x) = cos(x)
- The derivative of cosine:
\dfrac{d}{dx} \cos(x) = -\sin(x)
- Half angle cosine identity:
\cos^2(x) = \frac{1}{2}(1 + \cos(2x))
- Half angle sine identity:
\sin^2(x) = \frac{1}{2}(1 - \cos(2x))
tan^2(x) + 1 = sec^2(x)
\dfrac{d}{dx}(\tan(x)) = \sec^2(x) \Rightarrow \int \sec^2(x)dx = \tan(x) + C
\dfrac{d}{dx}(\sec x) = \sec(x)\tan(x) \Rightarrow \int\sec(x)\tan(x) dx = \sec(x) + C
Examples
Evaluate the integral
\int\sin^5(x)dx
- With trig identities, it's common to work backwards with u-sub. In the above example, we can convert the equation into simpler cosine functions by setting
du
to-\sin(x)dx
. This means thatu
is equal tocos(x)
.
\int\sin^4(x)\sin(x)dx
- Rewrite
sin^4(x)
to be(\sin^2(x))^2
to take advantage of the trig identity1 - \cos^2(x) = \sin^2(x)
\int(\sin^2x)^2 \sin(x)dx
- Apply the above trig identity and substitute
u
:
\int(1 - u^2)^2 (-du)
- Foil out and move negative out of integral:
-\int(1 - 2u^2 + u^4)du
- Take advantage of the distributive property of integrals:
- (u - \frac{2}{3}u^3 + \frac{1}{5}u^5) + C
- Substituting
\cos(x)
back in foru
, we get the evaluated (but not entirely simplified) integral:
-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x)