487 B
487 B
The below integration makes use of the following trig identities:
- The Pythagorean identity:
\sin^2(x) + \cos^2(x) = 1
- The derivative of sine:
\frac{d}{dx}sin(x) = cos(x)
- The derivative of cosine:
\dfrac{d}{dx} \cos(x) = -\sin(x)
- Half angle cosine identity:
\cos^2(x) = \frac{1}{2}(1 + \cos(2x))
- Half angle sine identity:
\sin^2(x) = \frac{1}{2}(1 - \cos(2x))
tan^2(x) + 1 = sec^2(x) \Rightarrow \int \sec^2(x)
\dfrac{d}{dx}(\tan(x)) = \sec^2(x)