Compare commits
2 Commits
da93ab2c5a
...
d5b3c54761
Author | SHA1 | Date | |
---|---|---|---|
![]() |
d5b3c54761 | ||
![]() |
eb2fca5f2d |
@ -1,4 +1,9 @@
|
|||||||
Given the formula $\sin(\alpha + \beta)$:
|
Given the formula $\sin(\alpha + \beta)$:
|
||||||
$$ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) $$
|
$$ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) $$
|
||||||
|
$$ \sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) $$
|
||||||
Given the formula $\cos(\alpha + \beta)$:
|
Given the formula $\cos(\alpha + \beta)$:
|
||||||
$$ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) $$
|
$$ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) $$
|
||||||
|
$$ \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) $$
|
||||||
|
Given the formula $\tan(\alpha + \beta)$:
|
||||||
|
$$\tan(\alpha + \beta) = \dfrac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} $$
|
||||||
|
$$\tan(\alpha - \beta) = \dfrac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta} $$
|
||||||
|
Loading…
x
Reference in New Issue
Block a user