610 B
610 B
Given the formula \sin(\alpha + \beta)
:
\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)
\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)
Given the formula \cos(\alpha + \beta)
:
\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)
\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)
Given the formula \tan(\alpha + \beta)
:
\tan(\alpha + \beta) = \dfrac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}
\tan(\alpha - \beta) = \dfrac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta}