Compare commits
20 Commits
3807a75b5b
...
47ba2bb11d
Author | SHA1 | Date | |
---|---|---|---|
![]() |
47ba2bb11d | ||
![]() |
3873085ccd | ||
![]() |
fcf0fcc1fb | ||
![]() |
b51fce6bac | ||
![]() |
dd0a77e726 | ||
![]() |
518bd4620f | ||
![]() |
b2e6171f7b | ||
![]() |
c0ca143aa1 | ||
![]() |
8009812a1f | ||
![]() |
e16bde1c2c | ||
![]() |
6b4861debf | ||
![]() |
1deb209d3a | ||
![]() |
f7e08f0cbe | ||
![]() |
ff39338ae3 | ||
![]() |
e65ad8f817 | ||
![]() |
46e32cbea1 | ||
![]() |
bd133a2216 | ||
![]() |
1531a0727d | ||
![]() |
1e4b6518c8 | ||
![]() |
03fefacc45 |
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -0,0 +1,27 @@
|
||||
{
|
||||
"commitMessage": "vault backup: {{date}}",
|
||||
"autoCommitMessage": "vault backup: {{date}}",
|
||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||
"autoSaveInterval": 5,
|
||||
"autoPushInterval": 0,
|
||||
"autoPullInterval": 5,
|
||||
"autoPullOnBoot": true,
|
||||
"disablePush": false,
|
||||
"pullBeforePush": true,
|
||||
"disablePopups": false,
|
||||
"listChangedFilesInMessageBody": false,
|
||||
"showStatusBar": true,
|
||||
"updateSubmodules": false,
|
||||
"syncMethod": "merge",
|
||||
"customMessageOnAutoBackup": false,
|
||||
"autoBackupAfterFileChange": false,
|
||||
"treeStructure": false,
|
||||
"refreshSourceControl": true,
|
||||
"basePath": "",
|
||||
"differentIntervalCommitAndPush": false,
|
||||
"changedFilesInStatusBar": false,
|
||||
"showedMobileNotice": true,
|
||||
"refreshSourceControlTimer": 7000,
|
||||
"showBranchStatusBar": true,
|
||||
"setLastSaveToLastCommit": false
|
||||
}
|
@ -1,3 +1,56 @@
|
||||
# History of Boolean Algebra
|
||||
- In 1849, George Boole published a scheme for describing logical thought and reasoning
|
||||
- In the 1930s, Claude Shannon applied Boolean algebra to describe circuits built with switches
|
||||
- Boolean algebra provides the theoretical foundation for digital design
|
||||
|
||||
# Properties of Boolean Algebra
|
||||
| Number | Col. A | Col. A Description | Col. B | Col. B Description |
|
||||
| ---------------------- | --------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------- | ------------------ |
|
||||
| 1. | $0 \cdot 0 = 0$ | | $1 + 1 = 1$ | |
|
||||
| 2. | $1 \cdot 1 = 1$ | | $0 + 0 = 0$ | |
|
||||
| 3. | $0 \cdot 1 = 1 \cdot 0 = 0$ | | $1 + 0 = 0 + 1 = 1$ | |
|
||||
| 4. | if $x = 0$ then $\overline{x} = 1$ | | if $x = 1$ then $\overline{x} = 0$ | |
|
||||
| 5. | $x \cdot 0 = 0$ | | $x + 1 = 1$ | |
|
||||
| 6. | $x \cdot 1 = x$ | | $x + 0 = x$ | |
|
||||
| 7. | $x \cdot x = x$ | | $x + x = x$ | |
|
||||
| 8. | $x \cdot \overline{x} = 0$ | | $$x + \overline{x} = 1$ | |
|
||||
| 9. | $\overline{\overline{x}} = x$ | | | |
|
||||
| 10. Commutative | $x \cdot y = y \cdot x$ | | $x + y = y + x$ | |
|
||||
| 11. Associative | $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ | | $x + (y + z) = (x + y) +z$ | |
|
||||
| 12. Distributive | $x \cdot (y +z) = x \cdot y + x \cdot z$ | | $x + y \cdot z = (x + y) \cdot (x + z$ | |
|
||||
| 13. Absorption | $x + x \cdot y = x$ | | $x \cdot (x + y) = x$ | |
|
||||
| 14. Combining | $x \cdot y + x \cdot \overline{y} = x$ | | $(x + y) \cdot (x + \overline{y}) = x$ | |
|
||||
| 15. DeMorgan's Theorem | $\overline{x \cdot y} = \overline{x} + \overline{y}$ | | $x + y = \overline{x} \cdot \overline{y}$ | |
|
||||
| 16. | $x + \overline{x} \cdot y = x + y$ | | $x \cdot (\overline{x} + y) = x \cdot y$ | |
|
||||
| 17. Consensus | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ | | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ | |
|
||||
# Synthesis
|
||||
In the context of binary logic, synthesis refers to the act of creating a boolean expression that evaluates to match a given truth table.
|
||||
|
||||
This is done by creating a product term for each entry in the table that has an output of $1$, that also evaluates to $1$, then ORing each product term together and then simplifying.
|
||||
|
||||
Example:
|
||||
|
||||
Given the below truth table, synthesize a boolean expression that corresponds.
|
||||
|
||||
| $x_1$ | $x_2$ | $f(x_1, x_2)$ |
|
||||
| ----- | ----- | ------------- |
|
||||
| 0 | 0 | 1 |
|
||||
| 0 | 1 | 1 |
|
||||
| 1 | 0 | 0 |
|
||||
| 1 | 1 | 1 |
|
||||
- $f(0, 0)$ evaluates to true with the expression $\overline{x}_1 \cdot \overline{x}_2$
|
||||
- $f(0, 1)$ evaluates to true with the expression $\overline{x}_1\cdot x_2$
|
||||
- $f(1, 0)$ should provide an output of zero, so that can be ignored
|
||||
- $f(1, 1)$ evaluates to true with the expression $x_1 \cdot x_2$
|
||||
ORing all of the above expression together, we get:
|
||||
$$ f(x_1, x_2) = \overline{x}_1\overline{x}_2 + \overline{x}_1 x_2 + x_1x_2 $$
|
||||
$$
|
||||
\begin{multline}
|
||||
= x_1x_2 \\
|
||||
= x
|
||||
\end{multline}
|
||||
$$
|
||||
# Logic Gates
|
||||
|
||||

|
||||
# NOT Gate
|
||||
|
@ -47,7 +47,7 @@ As an example, the below table shows how one might convert from $(857)_{10}$ to
|
||||
| $3 / 2 = 1$ | $1$ |
|
||||
| $1 / 2 = 0$ | $1$ |
|
||||
|
||||
The final answer is $1101011001$.
|
||||
The final answer is $1101011001$. The least significant bit is the remainder of the first division operation, and the most significant bit is the remainder of the last operation.
|
||||
# Definitions
|
||||
- **Xtor** is an abbreviation for *transistor*
|
||||
- **Moore's Law** states that the number of transistors on a chip doubles every two years.
|
||||
|
Loading…
x
Reference in New Issue
Block a user