vault backup: 2025-01-13 13:19:26
This commit is contained in:
		| @@ -24,7 +24,21 @@ | ||||
| | 16.                    | $x + \overline{x} \cdot y = x + y$                                                |                    | $x \cdot (\overline{x} + y) = x \cdot y$                                            |                    | | ||||
| | 17. Consensus          | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ |                    | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ |                    | | ||||
| # Synthesis | ||||
| In the context of binary logic, synthesis refers to the act of creating a boolean expression that evaluates to match a given truth table.  | ||||
|  | ||||
| This is done by creating a product term for each entry in the table that has an output of $1$, that also evaluates to $1$, then ORing each product term together and then simplifying. | ||||
|  | ||||
| Example: | ||||
|  | ||||
| Given the below truth table, synthesize a boolean expression that corresponds. | ||||
|  | ||||
| | $x_1$ | $x_2$ | $f(x_1, x_2)$ | | ||||
| | ----- | ----- | ------------- | | ||||
| | 0     | 0     | 1             | | ||||
| | 0     | 1     | 1             | | ||||
| | 1     | 0     | 0             | | ||||
| | 1     | 1     | 1             | | ||||
| -  | ||||
|  | ||||
| # Logic Gates | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 arc
					arc