vault backup: 2025-03-20 11:17:46
This commit is contained in:
@ -11,10 +11,16 @@ An antiderivative is useful when you know the rate of change, and you want to fi
|
||||
|
||||
## Formulas
|
||||
|
||||
| Differentiation Formula | Integration Formula |
|
||||
| ---------------------------------------- | ------------------------------------------------------- |
|
||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
|
||||
| $\dfrac{d}{dx} e^x = e^x$ | |
|
||||
| $\dfrac{d]{dx} a^x = \ln$ | |
|
||||
| Differentiation Formula | Integration Formula |
|
||||
| --------------------------------------------------- | ------------------------------------------------------- |
|
||||
| $\dfrac{d}{dx} x^n = nx^{x-1}$ | $\int x^n dx = \dfrac{1}{n+1}x^{n+1}+ C$ for $n \ne -1$ |
|
||||
| $\dfrac{d}{dx} kx = k$ | $\int k \space dx = kx + C$ |
|
||||
| $\dfrac{d}{dx} \ln \|x\| = \dfrac{1}{x}$ | |
|
||||
| $\dfrac{d}{dx} e^x = e^x$ | |
|
||||
| $\dfrac{d}{dx} a^x = (\ln{a}) a^x$ | |
|
||||
| $\dfrac{d}{dx} \sin x = \cos x$ | |
|
||||
| $\dfrac{d}{dx} \cos x = -\sin x$ | |
|
||||
| $\dfrac{d}{dx} \tan{x} = \sec^2 x$ | |
|
||||
| $\dfrac{d}{dx} \sec x = \sec x \tan x$ | |
|
||||
| $\dfrac{d}{dx} \sin^-1 x = \dfrac{1}{\sqrt{1-x^2}}$ | |
|
||||
| $\dfrac{d}{dx} \tan^-1 x = \dfrac{} | |
|
||||
|
Reference in New Issue
Block a user