vault backup: 2025-04-13 17:26:02
This commit is contained in:
parent
f2b9fb6cc2
commit
f4505a6d72
@ -158,9 +158,9 @@ This is used when you want to take the derivative of a function raised to a func
|
|||||||
> Find the derivative of the function $y = (2x \sin x)^{3x}$
|
> Find the derivative of the function $y = (2x \sin x)^{3x}$
|
||||||
|
|
||||||
5. $\ln y = \ln (3x \sin x)^{3x}$
|
5. $\ln y = \ln (3x \sin x)^{3x}$
|
||||||
6. $\ln y = 3x * \ln(2x \sin x)$*
|
6. $\ln y = 3x * \ln(2x \sin x)$
|
||||||
7. $\dfrac{d}{dx} \ln(y) = \dfrac{d}{dx} 3x(\ln 2 + \ln x + \ln(sinx))$
|
7. $\dfrac{d}{dx} \ln(y) = \dfrac{d}{dx} 3x(\ln 2 + \ln x + \ln(sinx))$
|
||||||
8. $\dfrac{1}{y} \dfrac{dy}{dx} = 3(\ln 2 + \ln x + \ln(\sin(x))) + 3x (0 + \dfrac{1}{x} + \dfrac{1}{\sin x} * \cos x)$j
|
8. $\dfrac{1}{y} \dfrac{dy}{dx} = 3(\ln 2 + \ln x + \ln(\sin(x))) + 3x (0 + \dfrac{1}{x} + \dfrac{1}{\sin x} * \cos x)$
|
||||||
9. $\dfrac{dy}{dx} = (3\ln 2 + 3 \ln x + 3\ln \sin(x) + 3\ln(\sin(x) + 3x\cot(x))(2x\sin x)^{3x}$
|
9. $\dfrac{dy}{dx} = (3\ln 2 + 3 \ln x + 3\ln \sin(x) + 3\ln(\sin(x) + 3x\cot(x))(2x\sin x)^{3x}$
|
||||||
# Chain Rule
|
# Chain Rule
|
||||||
$$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
|
$$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
|
||||||
@ -209,5 +209,5 @@ $$ \dfrac{d}{dx}(\arcsin(x) = \dfrac{1}{\sqrt{1-x^2}}$$
|
|||||||
Given these facts:
|
Given these facts:
|
||||||
12. Let $y$ be some function of $x$
|
12. Let $y$ be some function of $x$
|
||||||
13. $\dfrac{d}{dx} x = 1$
|
13. $\dfrac{d}{dx} x = 1$
|
||||||
14. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\
|
14. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user