vault backup: 2025-04-13 17:26:02

This commit is contained in:
arc 2025-04-13 17:26:02 -06:00
parent f2b9fb6cc2
commit f4505a6d72

View File

@ -158,9 +158,9 @@ This is used when you want to take the derivative of a function raised to a func
> Find the derivative of the function $y = (2x \sin x)^{3x}$
5. $\ln y = \ln (3x \sin x)^{3x}$
6. $\ln y = 3x * \ln(2x \sin x)$*
6. $\ln y = 3x * \ln(2x \sin x)$
7. $\dfrac{d}{dx} \ln(y) = \dfrac{d}{dx} 3x(\ln 2 + \ln x + \ln(sinx))$
8. $\dfrac{1}{y} \dfrac{dy}{dx} = 3(\ln 2 + \ln x + \ln(\sin(x))) + 3x (0 + \dfrac{1}{x} + \dfrac{1}{\sin x} * \cos x)$j
8. $\dfrac{1}{y} \dfrac{dy}{dx} = 3(\ln 2 + \ln x + \ln(\sin(x))) + 3x (0 + \dfrac{1}{x} + \dfrac{1}{\sin x} * \cos x)$
9. $\dfrac{dy}{dx} = (3\ln 2 + 3 \ln x + 3\ln \sin(x) + 3\ln(\sin(x) + 3x\cot(x))(2x\sin x)^{3x}$
# Chain Rule
$$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
@ -209,5 +209,5 @@ $$ \dfrac{d}{dx}(\arcsin(x) = \dfrac{1}{\sqrt{1-x^2}}$$
Given these facts:
12. Let $y$ be some function of $x$
13. $\dfrac{d}{dx} x = 1$
14. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$\
14. $\dfrac{d}{dx} y = \dfrac{dy}{dx}$