vault backup: 2025-01-30 09:08:43
This commit is contained in:
parent
cfd20d5851
commit
f441527eb2
@ -41,3 +41,15 @@ Using the definition of a derivative to determine the derivative of $f(x) = x^n$
|
|||||||
|
|
||||||
$$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$
|
$$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$
|
||||||
- Using pascal's triangle, we can approximate $(x + h)^n$
|
- Using pascal's triangle, we can approximate $(x + h)^n$
|
||||||
|
```
|
||||||
|
1
|
||||||
|
1 1
|
||||||
|
1 2 1
|
||||||
|
1 3 3 1
|
||||||
|
1 4 6 4 1
|
||||||
|
```
|
||||||
|
|
||||||
|
- Where $n = 0$: $(x + h)^0 = 1$
|
||||||
|
- Where $n = 1$: $(x +h)^1 = 1x + 1h$
|
||||||
|
- Where $n = 2$: $(x +h)^2 = x^2 + 2xh + h^2$
|
||||||
|
- Where $n = 3$: $(x + h)^3 = 1
|
||||||
|
Loading…
x
Reference in New Issue
Block a user