From f441527eb28a2af16637243660e91642242dadb0 Mon Sep 17 00:00:00 2001 From: arc Date: Thu, 30 Jan 2025 09:08:43 -0700 Subject: [PATCH] vault backup: 2025-01-30 09:08:43 --- education/math/MATH1210 (calc 1)/Derivatives.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/education/math/MATH1210 (calc 1)/Derivatives.md b/education/math/MATH1210 (calc 1)/Derivatives.md index cf66ba1..c15278c 100644 --- a/education/math/MATH1210 (calc 1)/Derivatives.md +++ b/education/math/MATH1210 (calc 1)/Derivatives.md @@ -41,3 +41,15 @@ Using the definition of a derivative to determine the derivative of $f(x) = x^n$ $$ f'(x) = \lim_{h \to 0} \dfrac{(x + h)^n - x^n}{h} $$ - Using pascal's triangle, we can approximate $(x + h)^n$ +``` + 1 + 1 1 + 1 2 1 + 1 3 3 1 +1 4 6 4 1 +``` + +- Where $n = 0$: $(x + h)^0 = 1$ +- Where $n = 1$: $(x +h)^1 = 1x + 1h$ +- Where $n = 2$: $(x +h)^2 = x^2 + 2xh + h^2$ +- Where $n = 3$: $(x + h)^3 = 1