vault backup: 2025-09-03 12:30:04

This commit is contained in:
arc
2025-09-03 12:30:04 -06:00
parent 4ce7f0f075
commit f0a0437612

View File

@ -23,4 +23,13 @@ $$\int xe^{2x}dx$$
- $dv = e^{2x}dx$
- $v = \frac{1}{2}e^{2x}$ - The antiderivative of $dv$.
2. Looking back at the integration by parts formula, we know that:
$$ \int udv = uv - \int v du $$
$$ \int udv = uv - \int v du $$
$$ \int xe^{2x}dx = (\frac{1}{2}e^{2x})(x)-\int (\frac{1}{2}e^{2x}) (1dx) $$
3. The remaining integral can be solved with $u$ substitution, but we've already defined $u$, so we use $w$ as a replacement.
- $w = 2x$
- $dw = 2dx$
- $\frac{1}{2}dw=dx$
1. Substituting $w$ and $dw$ into the integral:
$$ \int \frac{1}{2}e^w \frac{1}{2}dw $$
2. This gives an integral that can be computed naively
$$ \int\frac{1}{2}e^{w} $$