vault backup: 2025-09-03 13:47:38
This commit is contained in:
@ -22,4 +22,10 @@ $$ v_{\text{instant}} = v = \lim_{\Delta t \to 0}\frac{\Delta x}{\Delta t} = \fr
|
||||
- $a(t)$ -> **slope** of velocity-vs-time (derivative of $v(t)$)
|
||||
# Acceleration
|
||||
To find the instantaneous acceleration, we can apply the formula:
|
||||
$$a_{\text{instant}} = a = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$
|
||||
|
||||
$$a_{\text{instant}} = a = \frac{dv}{dt} = \frac{d}{dt} \frac{dx}{dt} = \frac{d^2x}{dt^2}$$
|
||||
## Equations of Motion for Constant Acceleration
|
||||
1. $v = v_0 + at$
|
||||
2. $x = x_0 + \frac{1}{2}(v_0 + v)t$
|
||||
3. $x = x_0 + v_0 t + \frac{1}{2} a t^2$
|
||||
4. $v^2 = v_0^2 + 2a(x - x_0)$
|
||||
|
Reference in New Issue
Block a user