vault backup: 2025-03-06 09:44:22
This commit is contained in:
@ -88,7 +88,7 @@ The above problem can be solved more easily *without* L'Hospital's rule, the lea
|
||||
L'Hospital's rule **cannot** be used in any other circumstance.
|
||||
|
||||
## Examples
|
||||
1. $\lim_{x \ to 0} \dfrac{7^x - 5^x}{2x}$
|
||||
1. $\lim_{x \to 0} \dfrac{7^x - 5^x}{2x}$
|
||||
2. $= \lim_{x \ to 0}\dfrac{7^x \ln(7) -5^x(\ln(5)}{2}$
|
||||
3. $= \dfrac{\ln(7) - \ln(5)}{2}$
|
||||
# Indeterminate form $(0 * \infty)$
|
||||
@ -96,4 +96,4 @@ If the $\lim_{x \to a}f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ then $\lim_{x
|
||||
|
||||
To evaluate an indeterminate product ($0 * \infty$), use algebra to convert the product to an equivalent quotient and then use L'Hopsital's Rule.
|
||||
|
||||
$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \\lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$
|
||||
$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$
|
||||
|
Reference in New Issue
Block a user