diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index e69de29..bef4c6e 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -0,0 +1,27 @@ +{ + "commitMessage": "vault backup: {{date}}", + "autoCommitMessage": "vault backup: {{date}}", + "commitDateFormat": "YYYY-MM-DD HH:mm:ss", + "autoSaveInterval": 5, + "autoPushInterval": 0, + "autoPullInterval": 5, + "autoPullOnBoot": true, + "disablePush": false, + "pullBeforePush": true, + "disablePopups": false, + "listChangedFilesInMessageBody": false, + "showStatusBar": true, + "updateSubmodules": false, + "syncMethod": "merge", + "customMessageOnAutoBackup": false, + "autoBackupAfterFileChange": false, + "treeStructure": false, + "refreshSourceControl": true, + "basePath": "", + "differentIntervalCommitAndPush": false, + "changedFilesInStatusBar": false, + "showedMobileNotice": true, + "refreshSourceControlTimer": 7000, + "showBranchStatusBar": true, + "setLastSaveToLastCommit": false +} \ No newline at end of file diff --git a/education/math/MATH1210 (calc 1)/Limits.md b/education/math/MATH1210 (calc 1)/Limits.md index 25d6caf..1e15456 100644 --- a/education/math/MATH1210 (calc 1)/Limits.md +++ b/education/math/MATH1210 (calc 1)/Limits.md @@ -88,7 +88,7 @@ The above problem can be solved more easily *without* L'Hospital's rule, the lea L'Hospital's rule **cannot** be used in any other circumstance. ## Examples -1. $\lim_{x \ to 0} \dfrac{7^x - 5^x}{2x}$ +1. $\lim_{x \to 0} \dfrac{7^x - 5^x}{2x}$ 2. $= \lim_{x \ to 0}\dfrac{7^x \ln(7) -5^x(\ln(5)}{2}$ 3. $= \dfrac{\ln(7) - \ln(5)}{2}$ # Indeterminate form $(0 * \infty)$ @@ -96,4 +96,4 @@ If the $\lim_{x \to a}f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ then $\lim_{x To evaluate an indeterminate product ($0 * \infty$), use algebra to convert the product to an equivalent quotient and then use L'Hopsital's Rule. -$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \\lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$ \ No newline at end of file +$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$