vault backup: 2025-01-07 18:34:44
This commit is contained in:
parent
236165cdd2
commit
d9aeb6320a
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -1,27 +0,0 @@
|
|||||||
{
|
|
||||||
"commitMessage": "vault backup: {{date}}",
|
|
||||||
"autoCommitMessage": "vault backup: {{date}}",
|
|
||||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
|
||||||
"autoSaveInterval": 5,
|
|
||||||
"autoPushInterval": 0,
|
|
||||||
"autoPullInterval": 5,
|
|
||||||
"autoPullOnBoot": true,
|
|
||||||
"disablePush": false,
|
|
||||||
"pullBeforePush": true,
|
|
||||||
"disablePopups": false,
|
|
||||||
"listChangedFilesInMessageBody": false,
|
|
||||||
"showStatusBar": true,
|
|
||||||
"updateSubmodules": false,
|
|
||||||
"syncMethod": "merge",
|
|
||||||
"customMessageOnAutoBackup": false,
|
|
||||||
"autoBackupAfterFileChange": false,
|
|
||||||
"treeStructure": false,
|
|
||||||
"refreshSourceControl": true,
|
|
||||||
"basePath": "",
|
|
||||||
"differentIntervalCommitAndPush": false,
|
|
||||||
"changedFilesInStatusBar": false,
|
|
||||||
"showedMobileNotice": true,
|
|
||||||
"refreshSourceControlTimer": 7000,
|
|
||||||
"showBranchStatusBar": true,
|
|
||||||
"setLastSaveToLastCommit": false
|
|
||||||
}
|
|
@ -9,13 +9,19 @@ Every mathematical function can be thought of as a set of ordered pairs, or an i
|
|||||||
- $f(2.1) = 9.61$
|
- $f(2.1) = 9.61$
|
||||||
- $f(2.01) = 9.061$
|
- $f(2.01) = 9.061$
|
||||||
- $f(2.0001) = 9.0006$
|
- $f(2.0001) = 9.0006$
|
||||||
We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$. $ \rarrow$"
|
We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$", or "As $x \to 2$, $f(x) \to 9$."
|
||||||
|
|
||||||
|
Limits are valuable because they can be used to describe a point on a graph, even if that point is not present.
|
||||||
|
# Standard Notation
|
||||||
|
The standard notation for a limit is:
|
||||||
|
$$ \lim_{x \to a} f(x) = L $$
|
||||||
|
- As $x$ approaches $a$, the output of $f(x)$ draws closer to $L$.
|
||||||
# Definitions
|
# Definitions
|
||||||
|
|
||||||
| Term | Definition |
|
| Term | Definition |
|
||||||
| --------------------- | ----------------------------------------------------------------------------- |
|
| --------------------- | ----------------------------------------------------------------------------- |
|
||||||
| Well behaved function | A function that is continuous, has a single value, and is defined everywhere. |
|
| Well behaved function | A function that is continuous, has a single value, and is defined everywhere. |
|
||||||
| | |
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user