vault backup: 2025-01-07 18:34:44

This commit is contained in:
arc 2025-01-07 18:34:44 -07:00
parent 236165cdd2
commit d9aeb6320a
2 changed files with 8 additions and 29 deletions

View File

@ -1,27 +0,0 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -9,13 +9,19 @@ Every mathematical function can be thought of as a set of ordered pairs, or an i
- $f(2.1) = 9.61$ - $f(2.1) = 9.61$
- $f(2.01) = 9.061$ - $f(2.01) = 9.061$
- $f(2.0001) = 9.0006$ - $f(2.0001) = 9.0006$
We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$. $ \rarrow$" We can note that the smaller the distance of the input value $x$ to $2$, the smaller the distance of the output to $9$. This is most commonly described in the terms "As $x$ approaches $2$, $f(x)$ approaches $9$", or "As $x \to 2$, $f(x) \to 9$."
Limits are valuable because they can be used to describe a point on a graph, even if that point is not present.
# Standard Notation
The standard notation for a limit is:
$$ \lim_{x \to a} f(x) = L $$
- As $x$ approaches $a$, the output of $f(x)$ draws closer to $L$.
# Definitions # Definitions
| Term | Definition | | Term | Definition |
| --------------------- | ----------------------------------------------------------------------------- | | --------------------- | ----------------------------------------------------------------------------- |
| Well behaved function | A function that is continuous, has a single value, and is defined everywhere. | | Well behaved function | A function that is continuous, has a single value, and is defined everywhere. |
| | |